

Welcome to F5 101 Kubernetes lab’s documentation!

Introduction

The purpose of this lab is to give you more visibility on

	Overview of Kubernetes and its key components

	Install Kubernetes in different flavors: All-in-one, One kubernetes Cluster (1 Master and 2 minions),

	How to launch application in Kubernetes

	How to install and use F5 containerized solutions (Container connector, Application Service proxy and F5 kube proxy)

Contents:

	1. Getting Started
	1.1. Lab Topology

	1.2. Connecting to Ravello

	2. Class 1: F5 101 Kubernetes
	2.1. Introduction

	2.2. Overview of F5® Container Connector (CC)

	2.3. F5 ASP and F5-kube-proxy overview

	2.4. Appendix: Cluster Setup Guide

1. Getting Started

Please follow the instructions provided by the instructor to start your
lab and access your jump host.

Note

All work for this lab will be performed exclusively from the Windows
jumphost. No installation or interaction with your local system is
required.

1.1. Lab Topology

In this section, we will cover our setup:

	1 basic cluster:

	1 master (no master HA)

	2 nodes

We will connect to a pre-built environment in Ravello

In the existing environment, here is the setup you’ll get:

	Hostname

	Kubernetes IP

	Role

	Login/Password

	ip-10-1-1-4

	10.1.10.11

	Master

	ssh: ubuntu/ravello - su : root/default

	ip-10-1-1-5

	10.1.10.21

	node1

	ssh: ubuntu/ravello - su : root/default

	ip-10-1-1-6

	10.1.10.22

	node2

	ssh: ubuntu/ravello - su : root/default

	Windows

	<public IP>

	Jumpbox

	rdp: student/agility

Here are the different aspects to take into account during this installation guide:

	We use Ubuntu xenial in the blueprints

	We updated on all the nodes the /etc/hosts file so that each node is reachable via its name

#master and nodes host file
$ cat /etc/hosts
127.0.0.1 localhost
10.1.10.11 ip-10-1-1-4 master1 master1.my-lab
10.1.10.21 ip-10-1-1-5 node1 node1.my-lab
10.1.10.22 ip-10-1-1-6 node2 node2.my-lab

You have many manuals available to explain how to install Kubernetes. If you don’t use Ubuntu, you can reference to this page to find the appropriate guide: Getting started guides - bare metal [http://kubernetes.io/docs/getting-started-guides/#bare-metal]

Here you’ll find guides for:

	fedora

	Centos

	Ubuntu

	CoreOS

and some other guides for non bare metal deployment (AWS, Google Compute Engine, Rackspace, …)

1.2. Connecting to Ravello

This guide will help you to either setup your own environment or leverage Ravello to learn about this.

1.2.1. Connect to your Ravello Student environment

Warning

With this blueprint, you don’t have to do the cluster setup guide

	Hostname

	Kubernetes IP

	Role

	Login/Password

	Master 1

	10.1.10.11

	Master

	ssh: ubuntu/ravello - su : root/default

	node 1

	10.1.10.21 a

	node

	ssh: ubuntu/ravello - su : root/default

	node 2

	10.1.10.22

	node

	ssh: ubuntu/ravello - su : root/default

	Windows

	<public IP>

	Jumpbox

	rdp: student/agility

1.2.2. Access your environment

Once your environment is started, find the ‘Windows CTF Jumpbox’ component under list of VMs and launch RDP (in the ACCESS menu)

[image: _images/Launch-RDP.png]
Click on the shortcut that got downloaded and it should open your RDP session. The credentials to use are student/agility

If you have trouble reading the text please see optional directions for changing text size in the Appendix.

Warning

For MAC user, it is recommended to use Microsoft Remote Desktop. You may not be able to access your jumpbox otherwise. It is available in the App store (FREE).

Change keyboard input

The default keyboard mapping is set to english. If you need to change it, here is the method

	Click on the start menu button and type ‘Language’ in the search field.

	Click on ‘Language’ option in the search list

[image: _images/select-region-language.png]

	Click on ‘Add a language’

[image: _images/select-change-keyboard.png]

	Add the language you want to have for your keyboard mapping.

Once you have access to your environment, you can go directly to the container connector section: Overview of F5® Container Connector (CC)

—> All the files referenced in this guide can be accessed in the /home/ubuntu/f5-demo directory. Please use the files in this directory, to avoid syntax issues from copy/paste errors <—

2. Class 1: F5 101 Kubernetes

	2.1. Introduction

	2.2. Overview of F5® Container Connector (CC)

	2.3. F5 ASP and F5-kube-proxy overview

	2.4. Appendix: Cluster Setup Guide

2.1. Introduction

The purpose of this lab is to give you more visibility on

	Overview of Kubernetes and its key components

	How to install Kubernetes on Ubuntu

	How to launch application in Kubernetes

	How to install and use F5 containerized solutions (Container connector, Application Service proxy and F5 kube proxy)

	2.1.1. Kubernetes overview

	2.1.2. Kubernetes networking

	2.1.3. Kubernetes services overview

2.1.1. Kubernetes overview

Kubernetes has a lot of documentation available at this location: Kubernetes docs [http://kubernetes.io/docs/]

On this page, we will try to provide all the relevant information to deploy successfully a cluster (Master + nodes)

2.1.1.1. Overview

Extract from: Kubernetes Cluster intro [http://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-intro/]

Kubernetes coordinates a highly available cluster of computers that are connected to work as a single unit.
The abstractions in Kubernetes allow you to deploy containerized applications to a cluster without tying them specifically to individual machines. To make use of this new model of deployment, applications need to be packaged in a way that decouples them from individual hosts: they need to be containerized.

Containerized applications are more flexible and available than in past deployment models, where applications were installed directly onto specific machines as packages deeply integrated into the host. Kubernetes automates the distribution and scheduling of application containers across a cluster in a more efficient way. Kubernetes is an open-sourceplatform and is production-ready.

A Kubernetes cluster consists of two types of resources:

	The Master coordinates the cluster

	Nodes are the workers that run applications

[image: ../../_images/getting-started-cluster-diagram.png]
The Master is responsible for managing the cluster. The master coordinates all activity in your cluster, such as scheduling applications, maintaining applications’ desired state, scaling applications, and rolling out new updates.

A node is a VM or a physical computer that serves as a worker machine in a Kubernetes cluster. Each node has a Kubelet, which is an agent for managing the node and communicating with the Kubernetes master. The node should also have tools for handling container operations, such as Docker or rkt. A Kubernetes cluster that handles production traffic should have a minimum of three nodes.

Masters manage the cluster and the nodes are used to host the running applications.

When you deploy applications on Kubernetes, you tell the master to start the application containers. The master schedules the containers to run on the cluster’s nodes. The nodes communicate with the master using the Kubernetes API, which the master exposes. End users can also use the Kubernetes API directly to interact with the cluster.

2.1.1.2. Kubernetes concepts

Extract from Kubernetes concepts [http://kubernetes.io/docs/user-guide/]

Cluster: Kubernetes Cluster [https://kubernetes.io/docs/admin/] A cluster is a set of physical or virtual machines and other infrastructure resources used by Kubernetes to run your applications.

Namespace: Kubernetes Namespace [https://kubernetes.io/docs/user-guide/namespaces/] Kubernetes supports multiple virtual clusters backed by the same physical cluster. These virtual clusters are called namespaces. Namespaces are intended for use in environments with many users spread across multiple teams, or projects. For clusters with a few to tens of users, you should not need to create or think about namespaces at all. Start using namespaces when you need the features they provide.
Namespaces provide a scope for names. Names of resources need to be unique within a namespace, but not across namespaces.
Namespaces are a way to divide cluster resources between multiple uses

Node: Kubernetes Node [https://kubernetes.io/docs/admin/node/] A node is a physical or virtual machine running Kubernetes, onto which pods can be scheduled. It was previously known as Minion

Pod: Kubernetes Pods [https://kubernetes.io/docs/user-guide/pods/] A pod is a co-located group of containers and volumes. The applications in a pod all use the same network namespace (same IP and port space), and can thus find each other and communicate using localhost. Because of this, applications in a pod must coordinate their usage of ports. Each pod has an IP address in a flat shared networking space that has full communication with other physical computers and pods across the network.
In addition to defining the application containers that run in the pod, the pod specifies a set of shared storage volumes. Volumes enable data to survive container restarts and to be shared among the applications within the pod.

Label: Kubernetes Label and Selector [https://kubernetes.io/docs/user-guide/labels/] A label is a key/value pair that is attached to a resource, such as a pod, to convey a user-defined identifying attribute. Labels can be used to organize and to select subsets of resources.

Selector: Kubernetes Label and Selector [https://kubernetes.io/docs/user-guide/labels/] A selector is an expression that matches labels in order to identify related resources, such as which pods are targeted by a load-balanced service.

deployments: Kubernetes deployments [https://kubernetes.io/docs/user-guide/deployments/] A Deployment provides declarative updates for Pods and Replica Sets (the next-generation Replication Controller). You only need to describe the desired state in a Deployment object, and the Deployment controller will change the actual state to the desired state at a controlled rate for you. You can define Deployments to create new resources, or replace existing ones by new ones.
A typical use case is:

	Create a Deployment to bring up a Replica Set and Pods.

	Check the status of a Deployment to see if it succeeds or not.

	Later, update that Deployment to recreate the Pods (for example, to use a new image).

	Rollback to an earlier Deployment revision if the current Deployment isn’t stable.

	Pause and resume a Deployment

ConfigMap: Kubernetes ConfigMap [https://kubernetes.io/docs/user-guide/configmap/] Any applications require configuration via some combination of config files, command line arguments, and environment variables. These configuration artifacts should be decoupled from image content in order to keep containerized applications portable. The ConfigMap API resource provides mechanisms to inject containers with configuration data while keeping containers agnostic of Kubernetes. ConfigMap can be used to store fine-grained information like individual properties or coarse-grained information like entire config files or JSON blobs

Replication Controller: Kubernetes replication controller [https://kubernetes.io/docs/user-guide/replication-controller/] A replication controller ensures that a specified number of pod replicas are running at any one time. It both allows for easy scaling of replicated systems and handles re-creation of a pod when the machine it is on reboots or otherwise fails.

Service: Kubernetes Services [https://kubernetes.io/docs/user-guide/services/] A service defines a set of pods and a means by which to access them, such as single stable IP address and corresponding DNS name.
Kubernetes pods are mortal. They are born and they die, and they are not resurrected. Replication Controllers in particular create and destroy pods dynamically (e.g. when scaling up or down or when doing rolling updates). While each pod gets its own IP address, even those IP addresses cannot be relied upon to be stable over time. This leads to a problem: if some set of pods (let’s call them backends) provides functionality to other pods (let’s call them frontends) inside the Kubernetes cluster, how do those frontends find out and keep track of which backends are in that set? Enter Services.

A Kubernetes service is an abstraction which defines a logical set of pods and a policy by which to access them - sometimes called a micro-service. The set of pods targeted by a service is (usually) determined by a label selector

Volume: Kuebernetes volume [https://kubernetes.io/docs/user-guide/volumes/] A volume is a directory, possibly with some data in it, which is accessible to a Container as part of its filesystem. Kubernetes volumes build upon Docker Volumes, adding provisioning of the volume directory and/or device.

2.1.2. Kubernetes networking

This is an extract from Networking in Kubernetes [http://http://kubernetes.io/docs/admin/networking/]

2.1.2.1. Summary

Kubernetes assumes that pods can communicate with other pods, regardless of which host they land on. We give every pod its own IP address so you do not need to explicitly create links between pods and you almost never need to deal with mapping container ports to host ports. This creates a clean, backwards-compatible model where pods can be treated much like VMs or physical hosts from the perspectives of port allocation, naming, service discovery, load balancing, application configuration, and migration

2.1.2.2. Docker model

Before discussing the Kubernetes approach to networking, it is worthwhile to review the “normal” way that networking works with Docker.

By default, Docker uses host-private networking. It creates a virtual bridge, called docker0 by default, and allocates a subnet from one of the private address blocks defined in RFC1918 [https://tools.ietf.org/html/rfc1918] for that bridge.
For each container that Docker creates, it allocates a virtual ethernet device (called veth) which is attached to the bridge. The veth is mapped to appear as eth0 in the container, using Linux namespaces. The in-container eth0 interface is given an IP address from the bridge’s address range.
The result is that Docker containers can talk to other containers only if they are on the same machine (and thus the same virtual bridge). Containers on different machines can not reach each other - in fact they may end up with the exact same network ranges and IP addresses.
In order for Docker containers to communicate across nodes, they must be allocated ports on the machine’s own IP address, which are then forwarded or proxied to the containers. This obviously means that containers must either coordinate which ports they use very carefully or else be allocated ports dynamically.

2.1.2.3. Kubernetes model

Coordinating ports across multiple containers is very difficult to do at scale and exposes users to cluster-level issues outside of their control.
Dynamic port allocation brings a lot of complications to the system - every application has to take ports as flags, the API servers have to know how to insert dynamic port numbers into configuration blocks, services have to know how to find each other, etc. Rather than deal with this, Kubernetes takes a different approach.

Kubernetes imposes the following fundamental requirements on any networking implementation (barring any intentional network segmentation policies):

	All containers can communicate with all other containers without NAT

	All nodes can communicate with all containers (and vice-versa) without NAT

	The IP that a container sees itself as is the same IP that others see it as

	What this means in practice is that you can not just take two computers running Docker and expect Kubernetes to work. You must ensure that the fundamental requirements are met.

Kubernetes applies IP addresses at the Pod scope - containers within a Pod share their network namespaces - including their IP address. This means that containers within a Pod can all reach each other’s ports on localhost. This does imply that containers within a Pod must coordinate port usage, but this is no different than processes in a VM.
We call this the IP-per-pod model. This is implemented in Docker as a pod container which holds the network namespace open while “app containers” (the things the user specified) join that namespace with Docker’s –net=container:<id> function

2.1.2.4. How to achieve this

There are a number of ways that this network model can be implemented. Here is a list of possible options:

	Contiv [https://github.com/contiv/netplugin]

	Flannel [https://github.com/coreos/flannel#flannel]

	Open vswitch [http://kubernetes.io/docs/admin/ovs-networking]

	L2 networks and linux bridging. You have a tutorial here [http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/]

	Project Calico [http://docs.projectcalico.org/]

	Romana [http://romana.io/]

	Weave net [https://www.weave.works/products/weave-net/]

For this lab, we will use Flannel.

2.1.3. Kubernetes services overview

Refer to Kubernetes services [http://kubernetes.io/docs/user-guide/services/] for more information

A Kubernetes service is an abstraction which defines a logical set of pods and a policy by which to access them. The set of pods targeted by a service is (usually) determined by a label selector.

As an example, consider an image-processing backend which is running with 3 replicas. Those replicas are fungible - frontends do not care which backend they use. While the actual pods that compose the backend set may change, the frontend clients should not need to be aware of that or keep track of the list of backends themselves. The service abstraction enables this decoupling.

For Kubernetes-native applications, Kubernetes offers a simple Endpoints API that is updated whenever the set of pods in a service changes. For non-native applications, Kubernetes offers a virtual-IP-based bridge to services which redirects to the backend pods.

2.1.3.1. Defining a service

A service in Kubernetes is a REST object, similar to a pod. Like all of the REST objects, a service definition can be POSTed to the apiserver to create a new instance. For example, suppose you have a set of pods that each expose port 9376 and carry a label “app=MyApp”.

{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "my-service"
 },
 "spec": {
 "selector": {
 "app": "MyApp"
 },
 "ports": [
 {
 "protocol": "TCP",
 "port": 80,
 "targetPort": 9376
 }
]
 }
}

This specification will create a new service object named “my-service” which targets TCP port 9376 on any pod with the “app=MyApp” label.

This service will also be assigned an IP address (sometimes called the cluster IP), which is used by the service proxies . The service’s selector will be evaluated continuously and the results will be POSTed to an Endpoints object also named “my-service”.

if the service is not a native kubernetes app, then you can do a service definition without the selector field. In such a case you’ll have to specify yourself the endpoints

{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "my-service"
 },
 "spec": {
 "ports": [
 {
 "protocol": "TCP",
 "port": 80,
 "targetPort": 9376
 }
]
 }
}

{
 "kind": "Endpoints",
 "apiVersion": "v1",
 "metadata": {
 "name": "my-service"
 },
 "subsets": [
 {
 "addresses": [
 { "ip": "1.2.3.4" }
],
 "ports": [
 { "port": 9376 }
]
 }
]
}

Note that a service can map an incoming port to any targetPort. By default the targetPort will be set to the same value as the port field. In the example above, the port for the service is 80 (HTTP) and will redirect traffic to port 9376 on the Pods

You can specify multiple ports if needed (like HTTP/HTTPS for an app)

Kubernetes service supports TCP (default) and UDP.

2.1.3.2. Publishing services - service types

For some parts of your application (e.g. frontends) you may want to expose a Service onto an external (outside of your cluster, maybe public internet) IP address, other services should be visible only from inside of the cluster.

Kubernetes ServiceTypes allow you to specify what kind of service you want. The default and base type is *ClusterIP*, which exposes a *service* to connection from inside the cluster. NodePort and LoadBalancer are two types that expose services to external traffic.

Valid values for the ServiceType field are:

	ExternalName: map the service to the contents of the externalName field (e.g. foo.bar.example.com), by returning a CNAME record with its value. No proxying of any kind is set up. This requires version 1.7 or higher of kube-dns.

	ClusterIP: use a cluster-internal IP only - this is the default and is discussed above. Choosing this value means that you want this service to be reachable only from inside of the cluster.

	NodePort: on top of having a cluster-internal IP, expose the service on a port on each node of the cluster (the same port on each node). You’ll be able to contact the service on any <NodeIP>:NodePort address. If you set the type field to “NodePort”, the Kubernetes master will allocate a port from a flag-configured range (default: 30000-32767), and each Node will proxy that port (the same port number on every Node) into your Service. That port will be reported in your Service’s spec.ports[*].nodePort field.

If you want a specific port number, you can specify a value in the nodePort field, and the system will allocate you that port or else the API transaction will fail (i.e. you need to take care about possible port collisions yourself). The value you specify must be in the configured range for node ports.

	LoadBalancer: on top of having a cluster-internal IP and exposing service on a NodePort also, ask the cloud provider for a load balancer which forwards to the Service exposed as a <NodeIP>:NodePort for each Node

2.1.3.3. Service type: LoadBalancer

On cloud providers which support external load balancers, setting the type field to “LoadBalancer” will provision a load balancer for your Service. The actual creation of the load balancer happens asynchronously, and information about the provisioned balancer will be published in the Service’s status.loadBalancer field. For example:

{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "my-service"
 },
 "spec": {
 "selector": {
 "app": "MyApp"
 },
 "ports": [
 {
 "protocol": "TCP",
 "port": 80,
 "targetPort": 9376,
 "nodePort": 30061
 }
],
 "clusterIP": "10.0.171.239",
 "loadBalancerIP": "78.11.24.19",
 "type": "LoadBalancer"
},
 "status": {
 "loadBalancer": {
 "ingress": [
 {
 "ip": "146.148.47.155"
 }
]
 }
 }
}

Traffic from the external load balancer will be directed at the backend Pods, though exactly how that works depends on the cloud provider (AWS, GCE, …). Some cloud providers allow the loadBalancerIP to be specified. In those cases, the load-balancer will be created with the user-specified loadBalancerIP. If the loadBalancerIP field is not specified, an ephemeral IP will be assigned to the loadBalancer. If the loadBalancerIP is specified, but the cloud provider does not support the feature, the field will be ignored

2.1.3.4. Service proxies

Every node in a Kubernetes cluster runs a kube-proxy. kube-proxy is responsible for implementing a form of virtual IP for Services

Since Kubernetes 1.2, the iptables proxy is the default behavior (another implementation of kube-proxy is the userspace implementation)

In this mode, kube-proxy watches the Kubernetes master for the addition and removal of Service and Endpoints objects. For each*Service*, it installs iptables rules which capture traffic to the Service’s cluster IP (which is virtual) and Port and redirects that traffic to one of the Service’s backend sets. For each Endpoints object, it installs iptables rules which select a backend Pod.

By default, the choice of backend is random. Client-IP based session affinity can be selected by setting service.spec.sessionAffinity to “ClientIP” (the default is “None”).

As with the userspace proxy, the net result is that any traffic bound for the Service’s IP:Port is proxied to an appropriate backend without the clients knowing anything about Kubernetes or Services or Pods. This should be faster and more reliable than the userspace proxy. However, unlike the userspace proxier, the iptables proxier cannot automatically retry another Pod if the one it initially selects does not respond, so it depends on having working readiness probes. A readiness probe gives you the capability to monitor the status of a pod via health-checks

2.1.3.5. Service discovery

The recommended way to implement Service discovery with Kubernetes is the same as with Mesos: DNS

when building a cluster, you can add add-on to it. One of the available add-on is a DNS Server.

The DNS server watches the Kubernetes API for new Services and creates a set of DNS records for each. If DNS has been enabled throughout the cluster then all Pods should be able to do name resolution of Services automatically.

For example, if you have a Service called “my-service” in Kubernetes Namespace “my-ns” a DNS record for “my-service.my-ns” is created. Pods which exist in the “my-ns” Namespace should be able to find it by simply doing a name lookup for “my-service”. Pods which exist in other Namespaces must qualify the name as “my-service.my-ns”. The result of these name lookups is the cluster IP.

Kubernetes also supports DNS SRV (service) records for named ports. If the “my-service.my-ns” *Servic*e has a port named “http” with protocol TCP, you can do a DNS SRV query for “_http._tcp.my-service.my-ns” to discover the port number for “http”

2.2. Overview of F5® Container Connector (CC)

2.2.1. Overview

The Container Connector makes L4-L7 services available to users deploying microservices-based applications in a containerized infrastructure. The CC - Kubernetes allows you to expose a Kubernetes Service outside the cluster as a virtual server on a BIG-IP® device entirely through the Kubernetes API.

The offical F5 documentation is here: F5 Kubernetes Container Integration [http://clouddocs.f5.com/containers/v1/kubernetes/]

2.2.2. Architecture

The Container Connector for Kubernetes comprises the f5-k8s-controller and user-defined “F5 resources”. The f5-k8s-controller is a Docker container that can run in a Kubernetes Pod. The “F5 resources” are Kubernetes ConfigMap resources that pass encoded data to the f5-k8s-controller. These resources tell the f5-k8s-controller:

	What objects to configure on your BIG-IP

	What Kubernetes Service the BIG-IP objects belong to (the frontend and backend properties in the ConfigMap, respectively).

The f5-k8s-controller watches for the creation and modification of F5 resources in Kubernetes. When it discovers changes, it modifies the BIG-IP accordingly. For example, for an F5 virtualServer resource, the CC - Kubernetes does the following:

	creates objects to represent the virtual server on the BIG-IP in the specified partition;

	creates pool members for each node in the Kubernetes cluster, using the NodePort assigned to the service port by Kubernetes;

	monitors the F5 resources and linked Kubernetes resources for changes and reconfigures the BIG-IP accordingly.

	the BIG-IP then handles traffic for the Service on the specified virtual address and load-balances to all nodes in the cluster.

	within the cluster, the allocated NodePort is load-balanced to all pods for the Service.

Before being able to use the Container Connector, you need to handle some prerequisites

2.2.3. Prerequisites

	You must have a fully active/licensed BIG-IP

	A BIG-IP partition needs to be setup for the Container Connector.

	You need a user with administrative access to this partition

	Your kubernetes environment must be up and running already

	2.2.3.1. Container Connector(CC) Setup

	2.2.3.2. Container Connector Usage

2.2.3.1. Container Connector(CC) Setup

the official CC documentation is here: Install the F5 Kubernetes BIG-IP Controller [http://clouddocs.f5.com/containers/v1/kubernetes/kctlr-app-install.html]

2.2.3.1.1. BIG-IP setup

To use F5 Container connector, you’ll need a BIG-IP up and running first.

Through the Jumpbox, you should have a BIG-IP available at the following URL: https://10.1.10.60

Warning

Connect to your BIG-IP and check it is active and licensed. Its login and password are: admin/admin

Note

If your BIG-IP has no license or its license expired, renew the license. You just need a LTM VE license for this lab. No specific add-ons are required (ask a lab instructor for eval licenses if your license has expired)

You need to setup a partition that will be used by F5 Container Connector.

To do so go to : System > Users > Partition List. Create a new partition called “kubernetes”

[image: ../../_images/f5-container-connector-bigip-partition-setup.png]
Once your partition is created, we can go back to Kubernetes to setup the F5 Container connector

2.2.3.1.2. Container Connector deployment

Here we consider you have already retrieved the F5 container connector image and loaded it in the environment.

Note

If you haven’t loaded it in your environment, you have two choices :

	load it on all your systems with the docker load -i <file_name.tar>

	load it on a system and push it into your registry

Now that our container is loaded, we need to define a deployment: Kubernetes deployments [https://kubernetes.io/docs/user-guide/deployments/] and create a secret to hide our bigip credentials. Kubernetes secrets [https://kubernetes.io/docs/user-guide/secrets/]

On the master , we need to setup a deployment file to load our container and also setup a secret for our big-ip credentials

Note

You can access it by running PUTTY in the RDP session, a session is already setup there

[image: ../../_images/f5-container-connector-launch-ssh.png]

To setup the secret containing your BIG-IP login and password, you can run the following command:

kubectl create secret generic bigip-login --namespace kube-system --from-literal=username=admin --from-literal=password=admin

you should see something like this:

[image: ../../_images/f5-container-connector-bigip-secret.png]
create a file called f5-cc-deployment.yaml. Here is its content: —> Please use the file in /home/ubuntu/f5-demo

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: k8s-bigip-ctlr-deployment
 namespace: kube-system
spec:
 replicas: 1
 template:
 metadata:
 name: k8s-bigip-ctlr
 labels:
 app: k8s-bigip-ctlr
 spec:
 containers:
 - name: k8s-bigip-ctlr
 image: "f5networks/k8s-bigip-ctlr:1.0.0"
 imagePullPolicy: IfNotPresent
 env:
 - name: BIGIP_USERNAME
 valueFrom:
 secretKeyRef:
 name: bigip-login
 key: username
 - name: BIGIP_PASSWORD
 valueFrom:
 secretKeyRef:
 name: bigip-login
 key: password
 command: ["/app/bin/k8s-bigip-ctlr"]
 args: [
 "--bigip-username=$(BIGIP_USERNAME)",
 "--bigip-password=$(BIGIP_PASSWORD)",
 "--bigip-url=10.1.10.60",
 "--bigip-partition=kubernetes",
 "--namespace=default"
]

Note

You can use the templates on your jumpbox desktop or the Kubernetes Master under /honme/ubuntu/f5-demo. If you use those files, you’ll need to :

	check the container image path in the deployment file is accurate

	Update the “bindAddr” in the configMap for an IP you want to use in this blueprint.

If you have issues with your yaml and syntax (identation MATTERS), you can try to use an online parser to help you : Yaml parser [http://codebeautify.org/yaml-validator]

Once you have your yaml file setup, you can try to launch your deployment. It will start our f5-k8s-controller container on one of our node (may take around 30sec to be in a running state):

kubectl create -f f5-cc-deployment.yaml

kubectl get deployment k8s-bigip-ctlr-deployment --namespace kube-system

[image: ../../_images/f5-container-connector-launch-deployment-controller.png]
FYI, To locate on which node the container connector is running, you can use the following command:

kubectl get pods -o wide -n kube-system

[image: ../../_images/f5-container-connector-locate-controller-container.png]
We can see that our container is running on the nodes

If you need to troubleshoot your container, you have two different ways to check the logs of your container:

	via kubectl command (recommended - easier)

	by connecting to the relevant node and use docker command. Here you’ll need to identify on which node it runs and use docker logs command:

If you want to use kubectl command: you need to use the full name of your pod as showed in the previous image and run the command kubectl logs k8s-bigip-ctlr-deployment-<id> -n kube-system

kubectl logs k8s-bigip-ctlr-deployment-710074254-b9dr8 -n kube-system

[image: ../../_images/f5-container-connector-check-logs-kubectl.png]
If you want to use docker logs command

On Node1 (or another node depending on the previous command):

sudo docker ps

[image: ../../_images/f5-container-connector-find-dockerID--controller-container.png]
Here we can see our container ID: 7a774293230b

Now we can check our container logs:

sudo docker logs 7a774293230b

[image: ../../_images/f5-container-connector-check-logs-controller-container.png]
You can connect to your container with kubectl also:

kubectl exec -it k8s-bigip-ctlr-deployment-710074254-b9dr8 -n kube-system -- /bin/sh

cd /app

ls -lR

exit

2.2.3.2. Container Connector Usage

Now that our container connector is up and running, let’s deploy an application and leverage our CC.

The environment already has a container called f5-demo-app already loaded as an image (Application provided by Eric Chen - F5 Cloud SA). It is available via docker hub - chen23/f5-demo-app

To deploy our front-end application, we will need to do the following:

	Define a deployment: this will launch our application running in a container

	Define a ConfigMap: ConfigMap can be used to store fine-grained information like individual properties or coarse-grained information like entire config files or JSON blobs. It will contain the BIG-IP configuration we need to push

	Define a Service: A Kubernetes service is an abstraction which defines a logical set of pods and a policy by which to access them. expose the service on a port on each node of the cluster (the same port on each node). You’ll be able to contact the service on any <NodeIP>:NodePort address. If you set the type field to “NodePort”, the Kubernetes master will allocate a port from a flag-configured range (default: 30000-32767), and each Node will proxy that port (the same port number on every Node) into your Service.

2.2.3.2.1. App Deployment

On the master we will create all the required files:

Create a file called my-frontend-deployment.yaml: —> Please use the file in /home/ubuntu/f5-demo

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: my-frontend
spec:
 replicas: 2
 template:
 metadata:
 labels:
 run: my-frontend
 spec:
 containers:
 - image: "chen23/f5-demo-app"
 env:
 - name: F5DEMO_APP
 value: "frontend"
 - name: F5DEMO_BACKEND_URL
 value: "http://my-backend/"
 imagePullPolicy: IfNotPresent
 name: my-frontend
 ports:
 - containerPort: 80
 protocol: TCP

Create a file called my-frontend-configmap.yaml: —> Please use the file in /home/ubuntu/f5-demo

kind: ConfigMap
apiVersion: v1
metadata:
 name: my-frontend
 namespace: default
 labels:
 f5type: virtual-server
data:
 schema: "f5schemadb://bigip-virtual-server_v0.1.2.json"
 data: |-
 {
 "virtualServer": {
 "frontend": {
 "balance": "round-robin",
 "mode": "http",
 "partition": "kubernetes",
 "virtualAddress": {
 "bindAddr": "10.1.10.81",
 "port": 80
 }
 },
 "backend": {
 "serviceName": "my-frontend",
 "servicePort": 80
 }
 }
 }

Create a file called my-frontend-service.yaml: —> Please use the file in /home/ubuntu/f5-demo

apiVersion: v1
kind: Service
metadata:
 name: my-frontend
 labels:
 run: my-frontend
spec:
 ports:
 - port: 80
 protocol: TCP
 targetPort: 80
 type: NodePort
 selector:
 run: my-frontend

We can now launch our application :

kubectl create -f my-frontend-deployment.yaml

kubectl create -f my-frontend-service.yaml

kubectl create -f my-frontend-configmap.yaml

[image: ../../_images/f5-container-connector-launch-app.png]
to check the status of our deployment, you can run the following commands:

kubectl get pods -n default

kubectl describe svc -n default

[image: ../../_images/f5-container-connector-check-app-definition.png]
Here you need to pay attention to:

	the NodePort value. That is the port used by Kubernetes to give you access to the app from the outside. Here it’s 32402

	the endpoints. That’s our 2 instances (defined as replicas in our deployment file) and the port assigned to the service: port 80

Now that we have deployed our application sucessfully, we can check our BIG-IP configuration.

Warning

Don’t forget to select the “kubernetes” partition or you’ll see nothing

[image: ../../_images/f5-container-connector-check-app-bigipconfig.png]
[image: ../../_images/f5-container-connector-check-app-bigipconfig2.png]
Here you can see that the pool members listed are all the kubernetes nodes.

Now you can try to access your application via your BIG-IP VIP: 10.1.10.81 :

[image: ../../_images/f5-container-connector-access-app.png]
Hit Refresh many times and go to your BIG-IP UI, go to Local Traffic > Pools > Pool list > my-frontend_10.1.10.81_80 > Statistics to see that traffic is distributed as expected

[image: ../../_images/f5-container-connector-check-app-bigip-stats.png]
How is traffic forwarded in Kubernetes from the <node IP>:32402 to the <container IP>:80 ? This is done via iptables that is managed via the kube-proxy instances:

On any nodes (master/nodes), run the following command:

sudo iptables-save | grep my-frontend

This will list the different iptables rules that were created regarding our frontend service.

[image: ../../_images/f5-container-connector-list-frontend-iptables.png]

2.3. F5 ASP and F5-kube-proxy overview

Deploying the F5® Application Services Proxy (ASP) in Kubernetes replaces
kube-proxy. This allows you to annotate a Kubernetes Service to enable its
ClusterIP to be implemented by the Application Services Proxy, while other
services retain the basic kube-proxy behavior.

The F5® Application Services Proxy in Kubernetes is composed of two (2) parts:

	A privileged service that manages the iptables rules of the host

	The proxy that processes service traffic.

The Application Services Proxy should be deployed on every node in your
Kubernetes cluster. The ASP on the same node as the client handles requests
and load-balances to the backend pod. Application Services Proxy creates a
virtual server for every Kubernetes Service in the cluster that has the F5
annotation configured

	2.3.1. F5 ASP and kube-proxy Deployment

	2.3.2. Test ASP and F5 Kube Proxy

2.3.1. F5 ASP and kube-proxy Deployment

To use ASP, we will need to add a Application Services Proxy(ASP) instance to Every Node

Every node in the cluster needs to run an instance of ASP. The steps below demonstrate how to use a Kubernetes ConfigMap and DaemonSet to run one Application Services Proxy per node and apply the same configurations to each ASP instance.

The DaemonSet ensures one Application Services Proxy runs per node in the Kubernetes cluster. The ConfigMap contains the configurations you want to apply to each ASP instance.

The first step will be to load the relevant F5 container images into our system. The ASP container image has been pulled in our private registry. Normally, you would retreive ASP from the Docker Store (requires account and accepting a EULA, freely distributed).

Official F5 ASP documentation can be found here: Install the F5 Kubernetes Application Service Proxy [http://clouddocs.f5.com/containers/v1/kubernetes/asp-install-k8s.html] and Deploy the F5 Application Service Proxy with the F5 Kubernetes Prox [http://clouddocs.f5.com/containers/v1/kubernetes/asp-k-deploy.html]

2.3.1.1. Deploy ASP

To deploy ASP, we will need to add the following configuration to our Kubernetes solution:

	A configmap: The ConfigMap contains the configurations you want to apply to each LWP instance.

	A daemonset: The DaemonSet ensures one Application Services Proxy runs per node in the Kubernetes cluster.

To setup those components, connect to the master and do the following:

create a yaml file called f5-asp-configmap.yaml and here is the content to copy/paste into it. —> Please use the file in /home/ubuntu/f5-demo

kind: ConfigMap
apiVersion: v1
metadata:
 name: f5-asp-config
 namespace: kube-system
data:
 asp.config.json: |-
 {
 "global": {
 "console-log-level": "info"
 },
 "orchestration": {
 "kubernetes": {
 "config-file": "/var/run/kubernetes/proxy-plugin/service-ports.json",
 "poll-interval": 500
 }
 }
 }

After the configmap file, we can setup the daemonset file. Create a file called f5-asp-daemonset.yaml and here is the content to copy/paste into it. —> Please use the file in /home/ubuntu/f5-demo

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 name: f5-asp
 namespace: kube-system
spec:
 template:
 metadata:
 labels:
 name: f5-asp
 spec:
 hostNetwork: true
 containers:
 - name: proxy-plugin
 image: "store/f5networks/asp:1.0.0"
 args:
 - --config-file
 - /etc/configmap/asp.config.json
 securityContext:
 privileged: false
 volumeMounts:
 - mountPath: /var/run/kubernetes/proxy-plugin
 name: plugin-config
 readOnly: true
 - mountPath: /etc/configmap
 name: asp-config
 volumes:
 - name: plugin-config
 hostPath:
 path: /var/run/kubernetes/proxy-plugin
 - name: asp-config
 configMap:
 name: f5-asp-config

Once our files are created, we can use them to create the relevant ConfigMap and Daemonset to start our ASP instances.

On the master, run the following commands:

kubectl create -f f5-asp-configmap.yaml

kubectl create -f f5-asp-daemonset.yaml

Here the ASP should be deployed automatically. You should have as many ASP instances launched as kubernetes systems you have in your kubernetes cluster (in the Ravello blueprint, there are three - 3). You can validate this with the following commands:

kubectl get pods -n kube-system

[image: ../../_images/f5-asp-and-kube-proxy-deploy-asp.png]
There should be three entries in the table returned by the command above that start with “f5-asp-“. The ASP instances are deployed. Now we need to update the kube-proxy with the F5-kube-proxy instances so that we can leverage our ASP.

2.3.1.2. Deploy f5-kube-proxy

Right now, we have a Daemonset that is used to deploy the default kube-proxy. We will retrieve it to delete the existing instances.

To retrieve the kube-proxy daemonset config, run the following command to review its configuration:

kubectl edit ds kube-proxy -n kube-system

It should launch a VI editor, save the configuration with the following command in vi :

:w /tmp/kube-proxy-origin.yaml

Exit the VI editor with

:q

Now, we can create our new daemonset to launch the F5-kube-proxy. create a new deamonset yaml called f5-kube-proxy-ds.yaml

vi /tmp/f5-kube-proxy-ds.yaml

Here is the content of the file, copy/paste it. —> Please use the file in /home/ubuntu/f5-demo

Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this file will be
reopened with the relevant failures.
#
apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 creationTimestamp: null
 generation: 1
 labels:
 component: kube-proxy
 k8s-app: kube-proxy
 kubernetes.io/cluster-service: "true"
 name: kube-proxy
 tier: node
 name: kube-proxy
 selfLink: /apis/extensions/v1beta1/namespaces//daemonsets/kube-proxy
spec:
 selector:
 matchLabels:
 component: kube-proxy
 k8s-app: kube-proxy
 kubernetes.io/cluster-service: "true"
 name: kube-proxy
 tier: node
 template:
 metadata:
 annotations:
 scheduler.alpha.kubernetes.io/affinity: '{"nodeAffinity":{"requiredDuringSchedulingIgnoredDuringExecution":{"nodeSelectorTerms":[{"matchExpressions":[{"key":"beta.kubernetes.io/arch","operator":"In","values":["amd64"]}]}]}}}'
 scheduler.alpha.kubernetes.io/tolerations: '[{"key":"dedicated","value":"master","effect":"NoSchedule"}]'
 creationTimestamp: null
 labels:
 component: kube-proxy
 k8s-app: kube-proxy
 kubernetes.io/cluster-service: "true"
 name: kube-proxy
 tier: node
 spec:
 containers:
 - command:
 - /proxy
 - --kubeconfig=/run/kubeconfig
 image: f5networks/f5-kube-proxy:1.0.0
 imagePullPolicy: IfNotPresent
 name: kube-proxy
 resources: {}
 securityContext:
 privileged: true
 terminationMessagePath: /dev/termination-log
 volumeMounts:
 - mountPath: /var/run/dbus
 name: dbus
 - mountPath: /run/kubeconfig
 name: kubeconfig
 - mountPath: /var/run/kubernetes/proxy-plugin
 name: plugin-config
 readOnly: false
 dnsPolicy: ClusterFirst
 hostNetwork: true
 restartPolicy: Always
 securityContext: {}
 terminationGracePeriodSeconds: 30
 volumes:
 - hostPath:
 path: /etc/kubernetes/kubelet.conf
 name: kubeconfig
 - hostPath:
 path: /var/run/dbus
 name: dbus
 - name: plugin-config
 hostPath:
 path: /var/run/kubernetes/proxy-plugin
status:
 currentNumberScheduled: 0
 desiredNumberScheduled: 0
 numberMisscheduled: 0
 numberReady: 0

Now that we have the legacy ds config and the updated one, we can delete the existing kube-proxy ds with the following command:

kubectl delete -f /tmp/kube-proxy-origin.yaml

You can check that the kube-proxy instances have been removed from Kubernetes with the following command

kubectl get pods -n kube-system

or

kubectl get pods --all-namespaces

[image: ../../_images/f5-asp-and-kube-proxy-delete-origin-kube-proxy.png]
Note that the entries starting with “kube-proxy-” in the table.

We can deploy the updated daemonset:

kubectl create -f /tmp/f5-kube-proxy-ds.yaml

You can check that the deployment was successful with the command:

kubectl get pods -n kube-system

[image: ../../_images/f5-asp-and-kube-proxy-create-f5-kube-proxy.png]

2.3.2. Test ASP and F5 Kube Proxy

The F5 ASP instances and F5 kube proxy instances have been deployed. Now we need to test our setup. To do so we will setup a backend application that will be reached by the frontend application we created earlier.

To deploy the backend application, connect to the master

We need to create two configuration to deploy our backend application:

	The deployment: it will define the application to deploy

	The service: will define our access our application. It will also contains annotations to leverage the ASP Lightweight proxy

Create a file called my-backend-deployment.yaml. Here is its content: —> Please use the file in /home/ubuntu/f5-demo

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: my-backend
spec:
 replicas: 2
 template:
 metadata:
 labels:
 run: my-backend
 spec:
 containers:
 - image: chen23/f5-demo-app
 imagePullPolicy: IfNotPresent
 env:
 - name: F5DEMO_APP
 value: "backend"
 name: my-backend
 ports:
 - containerPort: 80
 protocol: TCP

Create another file called my-backend-service.yaml. Here is its content: —> Please use the file in /home/ubuntu/f5-demo

apiVersion: v1
kind: Service
metadata:
 annotations:
 asp.f5.com/config: |
 {
 "ip-protocol": "http",
 "load-balancing-mode": "round-robin",
 "flags" : {
 "x-forwarded-for": true,
 "x-served-by": true
 }
 }
 name: my-backend
 labels:
 run: my-backend
spec:
 ports:
 - name: "http"
 port: 80
 protocol: TCP
 targetPort: 80
 selector:
 run: my-backend

Once our files are created, we can deploy our backend application with the following commands:

kubectl create -f my-backend-deployment.yaml

kubectl create -f my-backend-service.yaml

You can check if the deployment was successful with the commands:

kubectl get deployment my-backend

kubectl describe svc my-backend

[image: ../../_images/f5-asp-and-kube-proxy-deploy-app.png]
To test our application, access the frontend app with your browser. It is available via the BIG-IP with the URL: http://10.1.10.81

[image: ../../_images/f5-asp-and-kube-proxy-test-app-backend.png]
click on “Backend App”. Here you should see that the client is frontend app and not your browser anymore. It is because we did Client -> Frontend App -> Backend App

[image: ../../_images/f5-asp-and-kube-proxy-test-app-backend2.png]

2.4. Appendix: Cluster Setup Guide

	2.4.1. Cluster installation

	2.4.2. Setup master

	2.4.3. Node setup

	2.4.4. Test our setup

2.4.1. Cluster installation

2.4.1.1. Overview

As a reminder, in this example, this is our cluster setup:

	Hostname

	Kubernetes IP

	Role

	Master 1

	10.1.10.11

	Master

	node 1

	10.1.10.21

	node

	node 2

	10.1.10.22

	node

For this setup we will use the steps specified here: Ubuntu getting started guide 16.04 [http://kubernetes.io/docs/getting-started-guides/kubeadm/]

For ubuntu version earlier than 15, you will need to refer to this process: Ubuntu getting started guide [http://kubernetes.io/docs/getting-started-guides/ubuntu/manual/]

To install Kubernetes on our ubuntu systems, we will leverage kubeadm

Here are the steps that are involved (detailed later):

	make sure that firewalld is disabled (not supported today with kubeadm)

	disable Apparmor

	install docker if not already done (many kubernetes services will run into containers for reliability)

	install kubernetes packages

to make sure the systems are up to date, run this command on all systems:

sudo apt-get update && sudo apt-get upgrade -y

Warning

Make sure that your /etc/hosts files on master and nodes resolve your hostnames with 10.1.10.X IPs

2.4.1.2. installation

You need root privileges for this section, either use sudo or su to gain the required privileges.

you need to give access to the kubernetes packages to your systems, do this on all systems:

apt-get update && apt-get install -y apt-transport-https
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
cat <<EOF >/etc/apt/sources.list.d/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF
apt-get update

sudo apt-get -y install kubectl=1.5.3-00 kubelet=1.5.3-00 kubernetes-cni=0.3.0.1-07a8a2-00

curl -Lo /tmp/old-kubeadm.deb https://apt.k8s.io/pool/kubeadm_1.6.0-alpha.0.2074-a092d8e0f95f52-00_amd64_0206dba536f698b5777c7d210444a8ace18f48e045ab78687327631c6c694f42.deb
sudo dpkg -i /tmp/old-kubeadm.deb
sudo apt-get install -f

sudo apt-mark hold kubeadm kubectl kubelet kubernetes-cni

once this is done, install docker if not already done on all systems:

apt-get install -y docker.io

2.4.1.3. Limitations

for a full list of the limitations go here: kubeadm limitations [http://kubernetes.io/docs/getting-started-guides/kubeadm/#limitations]

	the cluster created here has a single master, with a single etcd database running on it. This means that if the master fails, your cluster loses its configuration data and will need to be recreated from scratch

2.4.2. Setup master

2.4.2.1. Master initialization

The master is the system where the “control plane” components run, including etcd (the cluster database) and the API server (which the kubectl CLI communicates with). All of these components run in pods started by kubelet (which is why we had to setup docker first even on the master node)

we will setup our master node on master, connect to it.

to setup master as a Kubernetes master, run the following command:

sudo kubeadm init --api-advertise-addresses=10.1.10.11 --use-kubernetes-version=v1.5.3 --pod-network-cidr=10.244.0.0/16

Here we specify:

	The IP address that should be used to advertise the master. 10.1.10.0/24 is the network for our control plane. if you don’t specify the –api-advertise-addresses argument, kubeadm will pick the first interface with a default gateway (because it needs internet access).

When running the command you should see something like this:

[image: ../../_images/cluster-setup-guide-kubeadm-init-master.png]
The initialization is successful if you see “Kubernetes master initialised successfully!”

you should see a line like this:

sudo kubeadm join --token=62468f.9dfb3fc97a985cf9 10.1.10.11

This is the command to run on the node so that it registers itself with the master. Keep the secret safe since anyone with this token can add authenticated node to your cluster. This is used for mutual auth between the master and the nodes

Warning

save this command somewhere since you’ll need it later

You can monitor that the services start to run by using the command:

kubectl get pods --all-namespaces

[image: ../../_images/cluster-setup-guide-kubeadmin-init-check.png]
kube-dns won’t start until the network pod is setup.

2.4.2.2. Network pod

You must install a pod network add-on so that your pods can communicate with each other.

It is necessary to do this before you try to deploy any applications to your cluster, and before* kube-dns* will start up. Note also that kubeadm only supports CNI based networks and therefore kubenet based networks will not work.

Here is the list of add-ons available:

	Calico

	Canal

	Flannel

	Romana

	Weave net

We will use Flannel as mentioned previously. To set Flannel as a network pod, we need to first modify the flannel deployment. First download the YAML deployment file.

wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml

Change “vxlan” to “host-gw” for Type.

net-conf.json: |
 {
 "Network": "10.244.0.0/16",
 "Backend": {
 "Type": "host-gw"
 }
 }

Also specify the correct interface (only necessary if you multiple interfaces)

command: ["/opt/bin/flanneld", "--ip-masq", "--kube-subnet-mgr", "--iface=ens4"]

Now deploy flannel.

kubectl apply -f ./kube-flannel.yml

2.4.2.3. check master state

If everything runs as expected you should have kube-dns that started successfully. To check the status of the different service, you can run the command:

kubectl get pods --all-namespaces

The output should show all services as running

[image: ../../_images/cluster-setup-guide-kubeadmin-init-check-cluster-get-pods.png]
kubectl get pods –all-namespaces

kubectl get cs

[image: ../../_images/cluster-setup-guide-kubeadmin-init-check-cluster.png]
kubectl cluster-info

[image: ../../_images/cluster-setup-guide-kubeadmin-init-check-cluster-info.png]
The next step will be to have our nodes join the master

2.4.3. Node setup

Once the master is setup and running, we need to connect our nodes to it.

2.4.3.1. Join the master

to join the master we need to run the command highlighted during the master initialization. In our setup it was:

sudo kubeadm join --token=62468f.9dfb3fc97a985cf9 10.1.10.11

the output should be like this :

[image: ../../_images/cluster-setup-guide-node-setup-join-master.png]
to make sure that your nodes have joined, you can run this command on the master:

kubectl get nodes

You should see your cluster (ie master + nodes)

[image: ../../_images/cluster-setup-guide-node-setup-check-nodes.png]
Check that all the services are started as expected (run on the master):

kubectl get pods --all-namespaces

[image: ../../_images/cluster-setup-guide-node-setup-check-services.png]
Here we see that some weave net containers keep restarting. This is due to our multi nic setup. Check this link: Deploying Kubernetes 1.4 on Ubuntu Xenial with Kubeadm [https://dickingwithdocker.com/deploying-kubernetes-1-4-on-ubuntu-xenial-with-kubeadm/]

You can validate this by connecting to a node and check the logs for the relevant container

[image: ../../_images/cluster-setup-guide-node-setup-crash-weave.png]
to fix this, you need to run the following command on the master:

sudo apt-get install -y jq

kubectl -n kube-system get ds -l 'component=kube-proxy' -o json | jq '.items[0].spec.template.spec.containers[0].command |= .+ ["--cluster-cidr=10.32.0.0/12"]' | kubectl apply -f - && kubectl -n kube-system delete pods -l 'component=kube-proxy'

[image: ../../_images/cluster-setup-guide-node-setup-crash-weave-fix.png]
Once this is done, you may check that everything is in a stable “Running” state:

kubectl get pods --all-namespaces

[image: ../../_images/cluster-setup-guide-node-setup-check-all-ok.png]
If you want to enable Kubernetes UI, you may install the dashboard. Run the following command on the master

First download a copy of the YAML file to deploy the dashboard.

wget https://git.io/kube-dashboard-no-rbac -O kube-dashboard-no-rbac.yml

Modify the service to be type NodePort

spec:
 ports:
 - port: 80
 targetPort: 9090
 type: NodePort
 selector:
 k8s-app: kubernetes-dashboard

Now run

kubectl create -f kube-dashboard-no-rbac.yml

You should see the following output:

deployment "kubernetes-dashboard" created
service "kubernetes-dashboard" created

to access the dashboard, you need to see on which port it is listening. You can find this information with the following command (on the master):

kubectl describe svc kubernetes-dashboard -n kube-system

[image: ../../_images/cluster-setup-guide-check-port-ui.png]
Here we can see that it is listening on port: 31578 (NodePort)

We can now access the dashboard by connecting to the following uri http://<master IP>:31578

[image: ../../_images/cluster-setup-guide-access-ui.png]

2.4.4. Test our setup

Our environment is setup. We can try our environment by deploying a large application built as micro services

We will use this application: Micro services demo [https://github.com/microservices-demo/microservices-demo]

Connect to the master and run the following command:

git clone https://github.com/microservices-demo/microservices-demo

kubectl create namespace sock-shop

kubectl apply -f microservices-demo/deploy/kubernetes/manifests

You can monitor the deployment of the application with the command:

kubectl get pods -n sock-shop

[image: ../../_images/cluster-setup-guide-test-sock-shop-status.png]

Warning

The deployment of this application may take quite some time (10-20min)

Once all the containers are in a “Running” state, we can try to access our application. To access our application, we need to identify on which port our application is listening to. We can do so with the following command:

kubectl describe svc front-end -n sock-shop

[image: ../../_images/cluster-setup-guide-test-sock-shop-find-IP.png]
You can now access your application with the following URL: http://<master IP>:<NodePort>

[image: ../../_images/cluster-setup-guide-test-sock-shop-access-ui.png]
You can also try to access it with the following URL: http://<Node1 IP>:<NodePort> , http://<Node2 IP>:<NodePort>

Index

 _images/cluster-setup-guide-node-setup-crash-weave.png
rootfnodeZ:~# docker logs 2£94963794%e

Lime="2017-01-31T09:10:01Z" level=info msg="3tarting Weswveworks NPC 1.5.2"

time="2017-01-31T09:10:01Z" level=info mag="Serving /metrics on :6731"

Tue Jan 31 09:10:01 2017 <5» ulogd.c:843 building new pluginstance stack: 'logl:NFLOG, basel:BASE, pocapl:PCAP!

E0131 09:10:31.223250 18980 reflector.go:214] github.comdwesveworks/weave/vendor/kSs.io/client-go/tools/cache/reflector.go: 109:

=://10.96.0.1:445/api/vl/pods?resourceVersion=0: dial tep 10.96.0.1:443: ifo timeout

E0131 09:10:31.223346 18980 reflector.go:214] github.comdwesveworks/weave/vendor/kSs.io/client-go/tools/cache/reflector.go: 109:

olicy: Get https://10.96.0.1:443/apis/extensions/vibetal/networkpolicies?resourceVersion=0: dial top 10.96.0.1:443: ifo timeout

E0131 09:10:31.223372 18980 reflector.go:214] github.comdwesveworks/weave/vendor/kSs.io/client-go/tools/cache/reflector.go: 109:

t https://10.96.0.1:443/api/v1l/namespaces?resourceVersion=0: dial tep 10.96.0.1:443: i/fo timeout

E0131 09:11:02.226568 18980 reflector.go:214] github.comdwesveworks/weave/vendor/kSs.io/client-go/tools/cache/reflector.go: 109:

t https://10.96.0.1:443/api/v1/ namespaces resourceVersion= dial tep 10.96.0.1:443: ifo timeout

Failed

Failed

Failed

Failed

to

to

to

to

list

list

list

list

*yl.Pod: Get http

*wlbetal.NetworkP

*yl . Namespace: Ge

*yl . Namespace: Ge

_images/cluster-setup-guide-node-setup-join-master.png
rootfnode?:~# kubeadmw join --token=62465f.2dfh3fec97a285cf2 10.1.10.11

[kubeadm] WARNING: kubeadm i=s in alpha, please do not use it for production clusters.

[preflight] Running pre-flight checks

[tokens] Validating provided token

[discovery] Created cluster info discovery client, requesting info from "http://10.1.10.11:98938/cluster-inf
d65L"

[discovery] Cluster info ohject received, werifying signature using given token

[discovery] Cluster info signature and contents are wvalid, will use API endpoints [https://10.1.10.11:6443]
[bootstrap] Trying to connect to endpoint https://10.1.10.11:64453

[bootstrap] Detected server wersion: wl1.5.2

[hootstrap] Successfully established connection with endpoint "https://10.1.10.11:6443"

[esr] Created API client to obtain unigue certificate for this node, generating keys and certificate signin
[esr] Receiwved signed certificate from the API server:

Issuer: CHN=kubernetes | Subject: CHN=system:node:nodeZ | Ch: false

Mot hefore: 2017-01-31 09:01:00 +0000 UTC Mot After: Z015-01-31 09:01:00 +0000 UTC

[esr] Generating kubelet configuration

[Fubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/kubelet.cont™

Node join complete:

* Certificate signing request sent to master and response
received.

* Kubelet informed of new sSecure connection details.

Fun 'kubectl get nodes' on the master to sSee this machine join.
rootlnodes :~# I

_images/cluster-setup-guide-node-setup-check-services.png
rootimasterl:~# kubectl get pods --all-namespaces

NAMEZFPACE

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

HNAME

durmy—-2055544543 -d2vhk
etod-masterl
kube-apiserver-masterl
kube-controller-manager-masterl
kube-discovery-1769546145-01739
kube-dns-2924299975-hgxvd
kube-proxy-ogbgl]
kube-proxy-1d45£0
kube-proxy-rlks1l
kube-scheduler-masterl
weave-net-0g2th

weave-net—4my9 1

weEve—net—quSD

RELDY
141
141
141
141
141
4/ 4
141
141
141
141
z/z
1/z
z/z

STALTUS
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Error
Running

REZTARTS

[P P R R Y Y o Y o Y o Y Y o I o

AGE
Z4dm
Z4dm
Z3m
Z4dm
Z4dm
ZZm
34

ZZm
St

Z4dm
St

34

18m

_images/cluster-setup-guide-node-setup-crash-weave-fix.png
daemonset "kube-proxy" configured
pod "kube-proxy-ghgli™ deleted
pod "kube-proxy-1dS3£0" deleted
pod "kube—proxy—zlkal" deleted

_static/cluster-setup-guide-kubeadmin-init-check-cluster-info.png
rootfmasterl:~# kubectl cluster—-info
Fubernetes waster is running at http://localhost:S080
FubeDlZ is running at http://localhost:8050/api/v1/ proxy/ namespaces/ kube-systen/ services/ kube-dns

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump' .

_static/cluster-setup-guide-kubeadmin-init-check-cluster.png
rootlmasterl:~# kubectl get o=

MAME
controller-manager
scheduler

etod-0
rootimasterl:~# I

STALTUS

Healthy
Healthy
Healthy

MES3AGE
(=)

(=)
{"health":

Torue":

EREOE

_static/cluster-setup-guide-kubeadm-init-master.png
login as: root
rootf10.1.1.1's password:
Welcomwe to Ubuntu 16.04.1 LTS (GMNU/Linux 4.4.0-59-generic xE6_64)

* Documentation: https://help.ubuntu.com

¥ Management : https:// landscape.canonical . com

* Support: https://ubuntu. com/ advantage
Last login: Mon Jan 30 09:15:26 2017 from 10.1.1.4
rootimasterl:~# service apparmor sStatus
® apparmor.service

Loaded: not-found (REeason: No such file or directory)
Aotive: inactive (dead)

rootimasterl:~# kubeadm init --api-advertise-addresses=10.1.10.11

[kubeadm] WARNING: kubeadm i=s in alpha, please do not use it for production clusters.
[preflight] Running pre-flight checks

[init] Using Kubernetes wversion: v1.5.2

[tokens] Generated token: "62468f.9dfb3fo97a9850£9"

[certificates] Generated Certificate Authority key and certificate.
[certificates] Generated API Server key and certificate

[certificates] Generated Z3ervice Account signing kevys

[certificates] Created keys and certificates in "/eto/kubernetes/pki™
[Fubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/kubelet.cont™
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/adwin.conf™
[apiclient] Created API client, waiting for the control plane to become ready
[apiclient] A11 control plane components are healthy after 239.520592 seconds
[apiclient] Waiting for at least one node to register and become ready
[apiclient] First node is ready after 0.505515 seconds

[apiclient] Creating a test deployment

[apiclient] Test deployment succeeded

[token-discovery] Created the kube-discovery deployment, waiting for it to hecome ready
[token-discovery] kube-discovery is ready after 111.002778 seconds

[addons] Created essential addon: kube-proxy

[addons] Created essential addon: kube-dns

Tour Kubernetes master has initialized successfully!

Tou should now deploy a pod network to the cluster.

Fun "kubectl apply -f [podnetwork] .vaml™ with one of the options listed at:
http://kubernetes. io/docs/admin/addons/

Tou can now join any nuwber of machines by running the following on each node:

kubeadm join --token=62465f.9dfb3fc97a9585cES 10.1.10.11
rootimasterl:~# I

_images/cluster-setup-guide-test-sock-shop-access-ui.png
@ 10.1.10.11:30001

OFFER OF THE DAY Buy 10 gat a pat hamster for free! Login | Register

L weaveworks CATALOGUE ~

_static/cluster-setup-guide-kubeadmin-init-check-cluster-get-pods.png
rootfimasterl:~# kubectl get pods --all-namespaces

NAMEZFPACE

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

HNAME

durmy—-2055544543 -d2vhk
etod-masterl
kube-apiserver-masterl
kube-controller-manager-masterl
kube-discovery-1769546145-01739
kube-dns-2924299975-hgxvd
kube-proxy-1d45£0
kube-scheduler-masterl
weave-net-gg350

rootfmasterl: ~# I

RELDY
141
141
141
141
141
4/ 4
141
141
z/z

STALTUS

Running
Running
Running
Running
Running
Running
Running
Running
Running

REZTARTS

o e e Y S o Y |

AGE
1im
1im
10m
10m
1im
St

St

10m
St

_images/cluster-setup-guide-test-sock-shop-find-IP.png
rootfimasterl:~# kubectl describe sve front-end -n sock-shop

Hame :
Namespace:
Lahels:
Selector:
Type:

IF:

Port:
NodeFort:
Endpoints:
SGession Affinity:
No ewvents.

front-end
sock-shop
neme=front-end
neme=front-end
NodeFort
10.99.2283.252
<unset> §0/TCP
<unset> 30001/TCP

ClientIF

_static/cluster-setup-guide-node-setup-check-nodes.png
rootfimasterl:~# kubectl get nodes

NAME STALTUS AGE
masterl Ready, master 20m
nodel Ready 1m
noded Ready 2m

rootfmasterl: ~# I

_static/cluster-setup-guide-node-setup-check-services.png
rootimasterl:~# kubectl get pods --all-namespaces

NAMEZFPACE

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

HNAME

durmy—-2055544543 -d2vhk
etod-masterl
kube-apiserver-masterl
kube-controller-manager-masterl
kube-discovery-1769546145-01739
kube-dns-2924299975-hgxvd
kube-proxy-ogbgl]
kube-proxy-1d45£0
kube-proxy-rlks1l
kube-scheduler-masterl
weave-net-0g2th

weave-net—4my9 1

weEve—net—quSD

RELDY
141
141
141
141
141
4/ 4
141
141
141
141
z/z
1/z
z/z

STALTUS
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Error
Running

REZTARTS

[P P R R Y Y o Y o Y o Y Y o I o

AGE
Z4dm
Z4dm
Z3m
Z4dm
Z4dm
ZZm
34

ZZm
St

Z4dm
St

34

18m

_static/cluster-setup-guide-kubeadmin-init-check.png
rootfimasterl:~# kubectl get pods --all-namespaces

NAMEZFPACE

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

HNAME

durmy—-2055544543 -d2vhk
etod-masterl
kube-apiserver-masterl
kube-controller-manager-masterl
kube-discovery-1769546145-01739
kube-dns-2924299975-hgxvd
kube-proxy-1d45£0
kuge—scheduler—masterl

RELDY
141
141
141
141
141
0/4
141
141

STALTUS

Running

Running

Running

Running

Running
ContainerCreating
Running

Running

REZTARTS

Lo e Y S o e |

AGE
41
41
3m
41
41
Zm
Zm
41

_static/cluster-setup-guide-node-setup-check-all-ok.png
rootfimasterl:~# kubectl get pods --all-namespaces

MAMESFACE

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

HNAME

dunmy-20859445475 - pvad
etod-masterl
kube-apiserver-masterl
kube-controller-manager-masterl
kube-discovery-1769546145-73539
kube-dns-2924299975-0kz45
kube-proxy-69pxr
kube-proxy-1llss]
kube-proxy-twids
kube-scheduler-masterl
weave-net-9pnto

weave-net-1xt4’

WeavVe-net-zver’y

rootfmasterl: ~# I

RELDY
141
141
141
141
141
4/ 4
141
141
141
141
z/z
z/z
z/z

STALTUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

REZTARTS

Lol o e s o }

AGE
St
St
10m
St
St
Tm
1lm
St
1lm
St
34
St
St

_static/cluster-setup-guide-node-setup-crash-weave-fix.png
daemonset "kube-proxy" configured
pod "kube-proxy-ghgli™ deleted
pod "kube-proxy-1dS3£0" deleted
pod "kube—proxy—zlkal" deleted

_static/cluster-setup-guide-node-setup-crash-weave.png
rootfnodeZ:~# docker logs 2£94963794%e

Lime="2017-01-31T09:10:01Z" level=info msg="3tarting Weswveworks NPC 1.5.2"

time="2017-01-31T09:10:01Z" level=info mag="Serving /metrics on :6731"

Tue Jan 31 09:10:01 2017 <5» ulogd.c:843 building new pluginstance stack: 'logl:NFLOG, basel:BASE, pocapl:PCAP!

E0131 09:10:31.223250 18980 reflector.go:214] github.comdwesveworks/weave/vendor/kSs.io/client-go/tools/cache/reflector.go: 109:

=://10.96.0.1:445/api/vl/pods?resourceVersion=0: dial tep 10.96.0.1:443: ifo timeout

E0131 09:10:31.223346 18980 reflector.go:214] github.comdwesveworks/weave/vendor/kSs.io/client-go/tools/cache/reflector.go: 109:

olicy: Get https://10.96.0.1:443/apis/extensions/vibetal/networkpolicies?resourceVersion=0: dial top 10.96.0.1:443: ifo timeout

E0131 09:10:31.223372 18980 reflector.go:214] github.comdwesveworks/weave/vendor/kSs.io/client-go/tools/cache/reflector.go: 109:

t https://10.96.0.1:443/api/v1l/namespaces?resourceVersion=0: dial tep 10.96.0.1:443: i/fo timeout

E0131 09:11:02.226568 18980 reflector.go:214] github.comdwesveworks/weave/vendor/kSs.io/client-go/tools/cache/reflector.go: 109:

t https://10.96.0.1:443/api/v1/ namespaces resourceVersion= dial tep 10.96.0.1:443: ifo timeout

Failed

Failed

Failed

Failed

to

to

to

to

list

list

list

list

*yl.Pod: Get http

*wlbetal.NetworkP

*yl . Namespace: Ge

*yl . Namespace: Ge

_images/cluster-setup-guide-node-setup-check-all-ok.png
rootfimasterl:~# kubectl get pods --all-namespaces

MAMESFACE

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

HNAME

dunmy-20859445475 - pvad
etod-masterl
kube-apiserver-masterl
kube-controller-manager-masterl
kube-discovery-1769546145-73539
kube-dns-2924299975-0kz45
kube-proxy-69pxr
kube-proxy-1llss]
kube-proxy-twids
kube-scheduler-masterl
weave-net-9pnto

weave-net-1xt4’

WeavVe-net-zver’y

rootfmasterl: ~# I

RELDY
141
141
141
141
141
4/ 4
141
141
141
141
z/z
z/z
z/z

STALTUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

REZTARTS

Lol o e s o }

AGE
St
St
10m
St
St
Tm
1lm
St
1lm
St
34
St
St

_images/cluster-setup-guide-node-setup-check-nodes.png
rootfimasterl:~# kubectl get nodes

NAME STALTUS AGE
masterl Ready, master 20m
nodel Ready 1m
noded Ready 2m

rootfmasterl: ~# I

_images/cluster-setup-guide-kubeadmin-init-check-cluster.png
rootlmasterl:~# kubectl get o=

MAME
controller-manager
scheduler

etod-0
rootimasterl:~# I

STALTUS

Healthy
Healthy
Healthy

MES3AGE
(=)

(=)
{"health":

Torue":

EREOE

_images/cluster-setup-guide-kubeadmin-init-check.png
rootfimasterl:~# kubectl get pods --all-namespaces

NAMEZFPACE

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

HNAME

durmy—-2055544543 -d2vhk
etod-masterl
kube-apiserver-masterl
kube-controller-manager-masterl
kube-discovery-1769546145-01739
kube-dns-2924299975-hgxvd
kube-proxy-1d45£0
kuge—scheduler—masterl

RELDY
141
141
141
141
141
0/4
141
141

STALTUS

Running

Running

Running

Running

Running
ContainerCreating
Running

Running

REZTARTS

Lo e Y S o e |

AGE
41
41
3m
41
41
Zm
Zm
41

_static/cluster-setup-guide-node-setup-join-master.png
rootfnode?:~# kubeadmw join --token=62465f.2dfh3fec97a285cf2 10.1.10.11

[kubeadm] WARNING: kubeadm i=s in alpha, please do not use it for production clusters.

[preflight] Running pre-flight checks

[tokens] Validating provided token

[discovery] Created cluster info discovery client, requesting info from "http://10.1.10.11:98938/cluster-inf
d65L"

[discovery] Cluster info ohject received, werifying signature using given token

[discovery] Cluster info signature and contents are wvalid, will use API endpoints [https://10.1.10.11:6443]
[bootstrap] Trying to connect to endpoint https://10.1.10.11:64453

[bootstrap] Detected server wersion: wl1.5.2

[hootstrap] Successfully established connection with endpoint "https://10.1.10.11:6443"

[esr] Created API client to obtain unigue certificate for this node, generating keys and certificate signin
[esr] Receiwved signed certificate from the API server:

Issuer: CHN=kubernetes | Subject: CHN=system:node:nodeZ | Ch: false

Mot hefore: 2017-01-31 09:01:00 +0000 UTC Mot After: Z015-01-31 09:01:00 +0000 UTC

[esr] Generating kubelet configuration

[Fubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/kubelet.cont™

Node join complete:

* Certificate signing request sent to master and response
received.

* Kubelet informed of new sSecure connection details.

Fun 'kubectl get nodes' on the master to sSee this machine join.
rootlnodes :~# I

nav.xhtml

 Table of Contents

 		
 Welcome to F5 101 Kubernetes lab’s documentation!

 		
 Getting Started

 		
 Lab Topology

 		
 Connecting to Ravello

 		
 Connect to your Ravello Student environment

 		
 Access your environment

 		
 Class 1: F5 101 Kubernetes

 		
 Introduction

 		
 Kubernetes overview

 		
 Kubernetes networking

 		
 Kubernetes services overview

 		
 Overview of F5® Container Connector (CC)

 		
 Overview

 		
 Architecture

 		
 Prerequisites

 		
 F5 ASP and F5-kube-proxy overview

 		
 F5 ASP and kube-proxy Deployment

 		
 Test ASP and F5 Kube Proxy

 		
 Appendix: Cluster Setup Guide

 		
 Cluster installation

 		
 Setup master

 		
 Node setup

 		
 Test our setup

_static/cluster-setup-guide-test-sock-shop-status.png
rootfmasterl:~# kubectl get pods -n sock-shop

HNAME

cart-379515391-pchlr
cart-db-20535159580-bms 4w
catalogue-3244713806-9f023
catalogue—-db-22906583463 —gg3zw
front-end-2321593771-khnn9
orders-44595342 40-gubdb
orders-db-3277638702-bxl3t
payment—-102592 6443 —zdff1
gquene-master-2973691953-h3119
rabhitmg-34720393 65—z 1nmog
shipping-2723739431-njr0j
user-99712959-5hent
user-dh-327013675-0ztla
zipkin—lZSS?DZSSE—dzgnr

RELDY
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

STALTUS
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
Running
ContainerCreating
ContainerCreating

REZTARTS

o |

AGE
15=
15=
14=
14=
14=
14=
14=
1i=
1i=
1i=
1i=
1lm

1lm

1lm

_static/comment-bright.png

_static/cluster-setup-guide-test-sock-shop-access-ui.png
@ 10.1.10.11:30001

OFFER OF THE DAY Buy 10 gat a pat hamster for free! Login | Register

L weaveworks CATALOGUE ~

_static/cluster-setup-guide-test-sock-shop-find-IP.png
rootfimasterl:~# kubectl describe sve front-end -n sock-shop

Hame :
Namespace:
Lahels:
Selector:
Type:

IF:

Port:
NodeFort:
Endpoints:
SGession Affinity:
No ewvents.

front-end
sock-shop
neme=front-end
neme=front-end
NodeFort
10.99.2283.252
<unset> §0/TCP
<unset> 30001/TCP

ClientIF

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/f5-asp-and-kube-proxy-create-f5-kube-proxy.png
ubuntu@ip-10-1-1-4:~% kubectl get pods -n kube-system

HAME

dummy-2088944543-jwszp
etcd-ip-10-1-1-4

f5-asp-2dzhc

f5-asp-159%6z

f5-asp-wgTxc
k8s-bigip-ctlr-deployment-710074254-b%dr8
kube-apiserver-ip-10-1-1-4
kube-controller-manager-ip-10-1-1-4
kube-discovery-1769846148-xph2r
kube-dns-29242995975-rzn22
kube-proxy-14ktc3

kube-proxy-mm3f0

kube-proxy-xklkx
kube-scheduler-ip-10-1-1-4
kubernetes-dashboard-3203962772-4n21j
weave-net-1t4én

weave-net-619r2

weave-net-tmfsf
ubuntu@ip-10-1-1-4:~§ ||

RERDY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
4/4
1/1
1/1
1/1
1/1
1/1
2/z
2/z
2/z

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

OO 00 0om-]

R

8

MW o oo

5d

gged

5d
5d
1h
5d
20s
20s
20s
5d
4d
5d
5d
5d

_static/f5-asp-and-kube-proxy-delete-origin-kube-proxy.png
ubuntu@ip-10-1-1-4:~§ kubectl get pods -n kube-system

HAME

dummy-2088944543-jwszp
etcd-ip-10-1-1-4

f5-asp-2dzhc

f5-asp-159%6z

f5-asp-wgTxc
k8s-bigip-ctlr-deployment-710074254-b%dr8
kube-apiserver-ip-10-1-1-4
kube-controller-manager-ip-10-1-1-4
kube-discovery-1769846148-xph2r
kube-dns-29242995975-rzn22
kube-scheduler-ip-10-1-1-4
kubernetes-dashboard-3203962772-4n21j
weave-net-1t4&n

weave-net-619r2

weave-net-tmfsf
ubuntu@ip-10-1-1-4:~§ ||

RERDY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
4/4
1/1
1/1
2/z
2/z
2/z

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

OO 00 0om-]

ok
[=:]

20
15

AGE

5d

gEEe

5d
5d
1h
5d
5d
4d
5d
5d
5d

_static/f5-asp-and-kube-proxy-load-f5-containers.png
root@nodet:~#
root@nodet:~#
4275504ce95

d1c800db2 627
4p0RERIEES9S
d7ec7e227731:
47440£3094c5
52799201551d:
Loaded image:
root@nodet:~f
fedclfchrTad:
carrazsisTze
240105208917+
322792852994
srocss0lsecd
Loaded image:
root@nodet:~f
REPOSITORY

£5-deno-app

ger.10/google_containers/Kube-proxy-andsd
ger.10/google_containers/kusernetes-dashboard-andsd

neepa

gunzip £5-kube-proxy-vi.3.7_£5.1.tar.gz
gunzip light-veight-proxy-vD.2.0.tar.qz

docker load -i light-weight-proxy—v0.2.0.tar

Loading
Loading
Loading
Loading
Loading
Loading

layer [=
layer
layer
layer
layer

layer [=

£5netuorks/ £5-ci-beta: 1ight-veight-proxy—v0.2.0
docker load -i f5-kube-proxy-vi.3.7_fs.1.tar

Loading
Loading
Loading
Loading
Loading

layer [
layer
layer
layer
Layer

£onetvorks/£5-ci-beta: £5-kube-proxy-vi.3.7_£5.1
docker images

weavevorks/ veave-npe
weavevorks/ veave-iube

f5metvorks/£5-
£5netvorks/£5-
£5metvorks/£5-
ger.io/google containers/pause-amdéd

cibeta
cibeta
cibeta

Tic
latest

vis.z

vi.s.1

2.4-alpine

1.8.2

1.8.2
Light-veight-proxy-v0.2.0
£5-xEs-controller-vD.1.0
£5-kube-proxy-v1.3.7_£5.1
3.0

130.9
45.57
86.02
43.08
1538

7.29

128.9
58.08
25.08
s0.73
1.538

THAGE

HB/130.9
HB/45.57
kB/86.02
HB/43.04
KB/1.536

B
nE
B
B
B

uB/7.25 B

B/ 128.9
nB/98.04
kB/25.08
HB/50.74
KB/1.536

™

726cecoladee
78844700400
11804131035
4za7703685a6
coler3zasazn
a4740ae55aae
©332de3d933
desaazz6aale
166aDe 5768
9925974958 fa

B
nE
B
B
B

CREATED
25 nours age

3
3

s
s

weeks ago
weeks ago
weeks ago
weeks ago
weeks ago

12 weeks ago
12 weeks ago
12 weeks ago

5

months ago

s1zE
96.35
173.5
103.5
54.78
68.78
166.7
216.3
1.075
268.5
746.9

B
B
B
B
B
B
B
=
B
XB

_static/f5-asp-and-kube-proxy-test-app-backend.png
(& BIGIP® - igip.mylsb (x [Ussge —FS Container & %)/ (& Demo App x

< C ® 1011080

Bpps © Kubernetes Dashbos

@ Frontend App

Welcome to Demo App

This is a very basic demo of a Frontend Application that cannects to a Backend Application
Note that on this page that the Client IP and User-Agent will differ from the next Backend Application
- Backend App
ServerIP=104603
Client IP = 10.40.0.0
Request Headers =
host 10.1.10.60

user-agent: Mazila/5.0 (Windaws NT 6.1; Win64; x64) AppleWenKit'537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36

_static/f5-asp-and-kube-proxy-deploy-app.png
rootimaster.

kubectl get deployment my-backend

ay-backend

CURRENT = UP-TO-DATE IVAILABLE
2 2

kubectl describe sve my-backend

rootimaster

Newespace:

selector:

Endpoints:
Session AEfinity:
Mo events.

roothuasteri:

my-backend
default

ClusterIp
10.100.178.121

meep 80/TCR
10.40.0.3:60,10.46.0.4:80
None

_static/f5-asp-and-kube-proxy-deploy-asp.png
ubuntufip-10-1-1-4:~% kubectl get pods -n kube-system

HAME

dummy-2088944543-jwszp
etcd-ip-10-1-1-4

f5-asp-2dzhc

f5-asp-159%6z

f5-asp-wgTxc
k8s-bigip-ctlr-deployment-710074254-b%dr8
kube-apiserver-ip-10-1-1-4
kube-controller-manager-ip-10-1-1-4
kube-discovery-1769846148-xph2r
kube-dns-29242995975-rzn22
kube-proxy-2hwrl

kube-proxy-tg0f3

kube-proxy-zZvnrz
kube-scheduler-ip-10-1-1-4
kubernetes-dashboard-3203962772-4n21j
weave-net-1t4&n

weave-net-619r2

weave-net-tmfsf
ubuntu@ip-10-1-1-4:~§ ||

RERDY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
4/4
1/1
1/1
1/1
1/1
1/1
2/z
2/z
2/z

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

OO 00 0om-]

R

8

[BT =T I =]

AGE

5d

FEEE

5d
5d
1h
5d
5d
5d
5d
5d
4d
5d
5d
5d

_static/f5-container-connector-bigip-partition-setup.png
D Kubernetes Dashbos:

o my
101,10,

OHLINE (ACTIVE)
Standalone

Traffic

oration

//10.0.10.60/xwi/

adrin
Adminstretor

System »» Users : Partition List

 Name

Common

O kubemetes

Delete.

_static/f5-container-connector-bigip-secret.png
root@ip-10-1-1-4:~% kubectl create secret generic bigip-login
secret "bigip-login® created
zootbip-10-1-1-%1-¢ |

namespace kube-system --from-literal=username=admin --from-literal=password=admin

_static/f5-asp-and-kube-proxy-test-app-backend2.png
B sttt -

© BIG-PO - bigipmylat (X | [3 Usage—F5 Container . x) (® Demo App

C | ® 10.1.10.80,

Bpps © Kubernetes Dashbos

Backend App

Welcome to Demo App
This is a very basic dema of a Backend Application that shauld only be accessile fram a Frontend Application
Note that on this page that the Client IP and User-Agent wil differ fram the Frontend Application

« Erontend App
Server IP = 10.40.0.3

Client IP = 10.40.0.0
Request Headers =
host: my-hackend
user-agent: Frontend App/1.0
seforwarded-for: 10.40.0.0, “f.1040.0.2

is not genuine

— T2 M
£7star s
ﬂ Mﬁm (2 B oy =

_static/f5-container-connector-access-app.png
@“ Demo App x

& C | ® 10.1.1080
Apps) Kubernetes Dashboz

Frontend App

Welcome to Demo App
This is a very basic demo of a Frontend Application that connects to a Backend Application.
Note that on this page that the Client IP and User-Agent will differ from the next Backend Application.

» Backend App
ServerIP=10.32.0.3

ClientIP=10.38.0.0
Request Headers =
host: 10.1.10.80

user-agent: Mozilla/5.0 (Windows NT 6.3; WinG4; x64) AppleWebKit/537.36 (KHTML, like Gecko)

_static/f5-container-connector-check-app-bigipconfig.png
' User: admin
) Foe Adnnstator pertion: PN

Local Traffic » Virtual Servers : Virtual Server List

£ - | Vintual Server List | Virtual Address List | Statistics

ndard Edit

_static/f5-container-connector-check-app-bigipconfig2.png
E « 2

Load Balancing

Local Traffic » Pools : Pool List

Properties Members Statistics

Load Balancing Method [Round Robin

«

Priority Group Activation Disabled 5

Update

Current Members

[v| ||~ Status | + Member

B @ 10.1.10.11:32402
- @ 10.1.10.21:32402
B @ 10.1.10.22:32402

Enable = Disable | Force Offline | Remove

_static/f5-container-connector-check-app-bigip-stats.png
/kubernetes/default_my-frontend Search | Reset Search Bits Packets |'
|v|| [~ status | [=| |« Pool < Pool Member < Partition / Path < n < Out|*In|< Out
B a & default_my-frontend kubernetes 758.9K 2.8M 534 405
- @ 10.1.10.11:32402 kubernetes 17.3K 60.0K 15 11
- @ 10.1.10.21:32402 kubernetes 376.8K 1.3M 262 196
- @ 10.1.10.22:32402 kubernetes 364.7K 1.4M 257 198

_static/f5-container-connector-check-logs-kubectl.png
sbuntu@ip-10-1-1-4:~% kubectl logs k8s-bigip-ctlr-deployment-710074254-b9dr8 -n kube-system

2017/03/28
2017/03/28
2017/03/28
2017/03/28
2017/03/28
2017/03/28
2017/03/28

o8:
o8:
o8:
o8:
o8:
o8:
o8:

36:
36:
36:
36:
36:
36:
36:

17
17
17
17
17
17
17

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

tbuntu@ip-10-1-1-4:~§ ||

ConfigWriter started: 0xc420448e40

Started config driver sub-process at pid: 11

NodePoller (0xc42017ab00) registering new listener: 0x4cOel0

NodePoller started: (0xc42017ab00)

ProcessNodeUpdate: Change in Node state detected

Wrote 0 Virtual Server configs

[2017-03-28 08:36:17,456 _ main INFO] entering inotify loop to watch Jtmp/kB8=s-bigip-ctlr.configl74728127/config.json

_static/f5-container-connector-find-dockerID--controller-container.png
ubuntu@ip-10-1-1-5:~§ sudo docker ps
CONTAINER ID IMAGE COMMAND
7a774293230b 10.1.10.11:5000/k8s-bigip-ctlr:v1.0.0 "/app/bin/k8s-bigip-c"

_static/f5-container-connector-check-app-definition.png
ubuntu@ip-10-1-1-4:~5 kubectl describe svc -n default

Hame:
Namespace:
Labels:

Selector:
Type:

IF:

Port:
Endpoints:

Seszion Affinity:

Ho events.

Hame:
Namespace:
Labels:
Selector:
Type:

IF:

Port:
NHodePort:
Endpoints:

Seszion Affinity:

No events.

kubernetes

default
component=apiserver
provider=kubernetes
<nonex

ClusterIP

10.96.0.1

https 443/TCP
10.1.10.11:6443
ClientIP

my-frontend

default

run=my-frontend
run=my-frontend

NHodePort

10.105.100.7

<unset> 80/TCP

<unset> 32402/TCP
10.32.0.3:80,10.40.0.1:80
None

_static/f5-container-connector-check-logs-controller-container.png
ubuntu@ip-10-1-1-5:~% sudo
:36:
:36:
:36:
:36:
:36:
:36:
36:

2017/03/28
2017/03/28
2017/03/28
2017/03/28
2017/03/28
2017/03/28
2017/03/28

08
08
08
08
08
08

o8:

17
17
17
17
17
17
17

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

wvbuntufip-10-1-1-5:~§ I

docker logs T7a774293230b

ConfigWriter started: 0xc420448e40

Started config driver sub-process at pid: 11
NodePoller (0xc42017ab00) registering new listener: 0x4cOel0

NodePoller started: (0xc42017ab00)

ProcessNodeUpdate: Change in Node state detected
Wrote 0 Virtual Server configs

[2017-03-28 08:36:17,456

main

INFO] entering inotify loop to watch /tmp/k8s-bigip-ctlr.configl74728127/config.json

_static/f5-container-connector-launch-ssh.png
Basic options for your PuTTY session

Specify the destination you want to connect to
Host Name (or IP address) Port

22

Connection type:
(O Raw (O Telnet O Rlogin ® S5H (O Serial

Load, save or delete a stored session
Saved Sessions

_static/f5-container-connector-launch-app.png
rootlmasterl:~# kubectl create -I my-frontend-deployment.yaml
deployment "my-frontend” created

rootlmasterii~§ kubectl create -f my-frontend-configmap.yaml
sonfigmap "oy-frontend” created

rootlmasteri:~§ kubectl create -f my-frontend-service.yaml
cervice "my-frontend” created

_static/f5-container-connector-launch-deployment-controller.png
ubuntu@ip-10-1-1-4:~5 kubectl get deployment k8s-bigip-ctlr-deployment --namespace kube-system
HAME DESIRED CURRENT UP-TC-DATE AVATLABLE AGE
k8s-bigip-ctlr-deployment 1 1 1 1 Im

_static/file.png

_static/f5-container-connector-list-frontend-iptables.png
ubuntu@ip-10-1-1-4:~§ sudo iptables-save | grep my-frontend

—A EUBE-NODEPORTS -p tcp -m comment ——comment "default/my-frontend:"™ -m tcp —--dport 32402 -j KUBE-MARE-MASQ

—A EUBE-NODEPORTS -p tcp -m comment —-comment "default/my-frontend:"™ -m tcp —-dport 32402 -j KUBE-SVC-E6EDICWYQONVE3T2

—A KUBE-SEP-2HDQICJSYHERTEX6 -=s 10.40.0.1/32 -m comment --comment "default/my-frontend:" -j KUBE-MARE-MASQ

—A KUBE-SEP-2HDQICJSYHERTEX6 -p tcp -m comment —-comment "default/my-frontend:™ -m tcp -j DNAT --to-destination 10.40.0.1:80

—A KUBE-SEP-46DFEBNQHPUSHZCM -s 10.32.0.3/32 -m comment --comment "default/my-frontend:" -j KUBE-MARE-MASQ

—A KUBE-SEP-46DFEBNQHPUSHZCM -p tcp -m comment —-comment "default/my-frontend:™ -m tcp -j DNAT --to-destination 10.32.0.3:80

-L KUBE-SERVICES ! -= 10.32.0.0/12 -d 10.105.100.7/32 -p tcp -m comment —--—comment "default/my-frontend: cluster IP" -m tcp —-dport 80 -j KUBE-MARE-MASQ
-A EKUBE-SERVICES -d 10.105.100.7/32 -p tcp -m comment --comment "default/my-frontend: cluster IP"™ -m tcp —-dport 80 -j KUBE-SVC-E6EDICWYQONVE3T2

—A KUBE-SVC-EGEDICWYQONVE3T72 -m comment --comment "default/my-frontend:"™ -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-46DFEBNQHPUSHZCM
—L KUBE-SVC-E6EDICWYQONVE3T72 -m comment —-comment "default/my-frontend:"™ -j EUBE-SEP-2HDQICJSYHERTEXGE

_static/f5-container-connector-locate-controller-container.png
ubuntu@ip-10-1-1-4:~§ kubectl get pods -o wide -n kube-system

HAME

dummy-2088944543-jwszp
etcd-ip-10-1-1-4
k8s-bigip-ctlr-deployment-710074254-b%dr8
kube-apiserver-ip-10-1-1-4
kube-controller-manager-ip-10-1-1-4
kube-discovery-1769846148-mk3pg
kube-discovery-1769846148-mvl1Z2n
kube-discovery-1769846148-xph2r
kube-dns-29242995975-rzn22
kube-proxy-2hwrl

kube-proxy-tg0f3

kube-proxy-zZvnrz
kube-scheduler-ip-10-1-1-4
kubernetes-dashboard-3203962772-4n21j
weave-net-1t4én

weave-net-619r2

weave-net-tmfsf
ubuntu@ip-10-1-1-4:~§ ||

RERDY
1/1
1/1
1/1
1/1
1/1
0/1
0/1
1/1
4/4
1/1
1/1
1/1
1/1
1/1
2/z
2/z
2/z

STATUS

Running

Running

Running

Running

Running
MatchNodeSelector
MatchNodeSelector
Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

RESTARTS

00 O0omomoO W -]

R

8

[BT =T I =]

AGE

5d
5d

5d
5d
3d
id
25m
5d
5d
5d
5d
5d
3d
5d
5d
5d

IF

10.1.10.
10.1.10.
10.40.0.
10.1.10.
10.1.10.

<none>
<none>

10.1.10.
10.32.0.
-21

10.1.10

10.1.10.
.22

10.1.10

10.1.10.
10.32.0.
.22
-21

10.1.10
10.1.10

10.1.10.

11
11

11

11

11

11

11

11

HCDE
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-5
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-5
ip-10-1-1-4
ip-10-1-1-6
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-6
1-1-5
1-1-4

_static/jenkins-login.png
G Jenkins x

& C | ® Notsecure | 10.1.10.100:8080/login?from=%2F
E] Lab Guide (D BIG-P @ KeS (3 Jenkins (@ DemoApp [d SplunkBIG-P [SplunkAS? (% NewTab [Adv Demo

Jenkins,

User: admin

Password

Remember me on this computer

_static/jenkins-projects.png
Jenkins

& New ltem

& People AL+

= Build History s Name |
A Manage Jenkins
& My Views

A Credentials

1_setup_demo
2_setup_adv_demo

3_teardown_ady_demo

e ee =

Build Queue = 4. teardown_demo

No builds in the queue lcon: SML

_static/front_cover.png
'

shoot
“test sugoe:
°
roxsiqiee_debib® eunt

1_lhc anBBA Graem ent
0.4

alat > segemisic v

20,0 60520 1 wmbe elogbeg” (1 niet”

1.0 0*:*stoode weu_nimbe*,"0_5.0 £.0_$.0

8.0_1,0_0° tuode

.q q
.0

sitovg*,"0 S0
smod* *t 0% *anoitesgous_teet”,"0 ¢
0 5.1 1.0 0" MemengAsenesil Noqque
weiv_oitonq®,*0, 5.0 £,0_5.0_1,0.0":*

telewsn vedoisa*,0_€,0_S.1_It 0
0,80

D_£.0 1.0.80 0°:*et0ons S
waqewgelonq” .t &1 I ED S0
180V 01etwaiviesio’, "0° “ssdll noltesup_hoaaus Hion*,*0":"stne.
te. *010 08", "08" Himil"): “elsbom” (" lam1on - “wlv_egem
LI wen®“wbo 1
ne3 UDY aeona 18 Nol1aellnd 010q palllee ot F'Bhow ol 18D 2t
AN\ llag (el (3Nege 891 (YD) snqRIQOloTa eQe "
V apttit e

*moo.eept

oo . heupt fakreat

.
€Y oo T

_static/getting-started-cluster-diagram.png
Cluster Diagram

Node

Oﬁ Master

node processes

Kubernetes cluster

_static/jenkins-setup_demo-1.png
Jenkins 1. setup_demo

4 Back to Dashboard . .
Pipeline 1. setup_demo

O, status

= Changes

£ Buid Now

@ Delete Pipeline

—" Recent Changes
£% connigure

O, Full stage View

Pipeline Syntax Stage View

No data available. This Pipeline has not yet run
£+ Build History trend =

find

1
Permalinks

RSS for all [§) RSS for failures

_images/f5-container-connector-check-app-bigip-stats.png
/kubernetes/default_my-frontend Search | Reset Search Bits Packets |'
|v|| [~ status | [=| |« Pool < Pool Member < Partition / Path < n < Out|*In|< Out
B a & default_my-frontend kubernetes 758.9K 2.8M 534 405
- @ 10.1.10.11:32402 kubernetes 17.3K 60.0K 15 11
- @ 10.1.10.21:32402 kubernetes 376.8K 1.3M 262 196
- @ 10.1.10.22:32402 kubernetes 364.7K 1.4M 257 198

_static/jenkins-setup_demo-2.png
admin | log of

Jenkins 1. setup_demo

4 Back to Dashboard

= Changes
£ Buid Now
@ Delete Pipeline
£% connigure
O, Full Stage View

© Pipeiine Syntax

& Build History trend =
find
om 2017 1050 P
RSS for all) RSS for failures

Pipeline 1. setup_demo

—# Recent Changes
=

Stage View
create
clone git repo. Kubernetes
partition
1s 591ms.
Way 30
g 1s 591ms
250

Permalinks

deploy F5
Container
Connector

871ms

871ms

Deploy
FRONTEND
App

1s.

1s

Verify
FRONTEND

325

32s

Deploy ASP

589ms

589ms

Deploy F5
Kube Proxy

ds

4s

Deploy
BACKEND

841ms.

841ms

ENABLE AUTO meFRES:

(%add descripti

isable Project

Verify
BACKEND

325

32s

_images/f5-container-connector-check-app-bigipconfig2.png
E « 2

Load Balancing

Local Traffic » Pools : Pool List

Properties Members Statistics

Load Balancing Method [Round Robin

«

Priority Group Activation Disabled 5

Update

Current Members

[v| ||~ Status | + Member

B @ 10.1.10.11:32402
- @ 10.1.10.21:32402
B @ 10.1.10.22:32402

Enable = Disable | Force Offline | Remove

_images/f5-container-connector-check-app-bigipconfig.png
' User: admin
) Foe Adnnstator pertion: PN

Local Traffic » Virtual Servers : Virtual Server List

£ - | Vintual Server List | Virtual Address List | Statistics

ndard Edit

_images/f5-container-connector-check-logs-controller-container.png
ubuntu@ip-10-1-1-5:~% sudo
:36:
:36:
:36:
:36:
:36:
:36:
36:

2017/03/28
2017/03/28
2017/03/28
2017/03/28
2017/03/28
2017/03/28
2017/03/28

08
08
08
08
08
08

o8:

17
17
17
17
17
17
17

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

wvbuntufip-10-1-1-5:~§ I

docker logs T7a774293230b

ConfigWriter started: 0xc420448e40

Started config driver sub-process at pid: 11
NodePoller (0xc42017ab00) registering new listener: 0x4cOel0

NodePoller started: (0xc42017ab00)

ProcessNodeUpdate: Change in Node state detected
Wrote 0 Virtual Server configs

[2017-03-28 08:36:17,456

main

INFO] entering inotify loop to watch /tmp/k8s-bigip-ctlr.configl74728127/config.json

_images/f5-container-connector-check-app-definition.png
ubuntu@ip-10-1-1-4:~5 kubectl describe svc -n default

Hame:
Namespace:
Labels:

Selector:
Type:

IF:

Port:
Endpoints:

Seszion Affinity:

Ho events.

Hame:
Namespace:
Labels:
Selector:
Type:

IF:

Port:
NHodePort:
Endpoints:

Seszion Affinity:

No events.

kubernetes

default
component=apiserver
provider=kubernetes
<nonex

ClusterIP

10.96.0.1

https 443/TCP
10.1.10.11:6443
ClientIP

my-frontend

default

run=my-frontend
run=my-frontend

NHodePort

10.105.100.7

<unset> 80/TCP

<unset> 32402/TCP
10.32.0.3:80,10.40.0.1:80
None

_images/f5-asp-and-kube-proxy-test-app-backend.png
(& BIGIP® - igip.mylsb (x [Ussge —FS Container & %)/ (& Demo App x

< C ® 1011080

Bpps © Kubernetes Dashbos

@ Frontend App

Welcome to Demo App

This is a very basic demo of a Frontend Application that cannects to a Backend Application
Note that on this page that the Client IP and User-Agent will differ from the next Backend Application
- Backend App
ServerIP=104603
Client IP = 10.40.0.0
Request Headers =
host 10.1.10.60

user-agent: Mazila/5.0 (Windaws NT 6.1; Win64; x64) AppleWenKit'537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36

_images/f5-asp-and-kube-proxy-deploy-asp.png
ubuntufip-10-1-1-4:~% kubectl get pods -n kube-system

HAME

dummy-2088944543-jwszp
etcd-ip-10-1-1-4

f5-asp-2dzhc

f5-asp-159%6z

f5-asp-wgTxc
k8s-bigip-ctlr-deployment-710074254-b%dr8
kube-apiserver-ip-10-1-1-4
kube-controller-manager-ip-10-1-1-4
kube-discovery-1769846148-xph2r
kube-dns-29242995975-rzn22
kube-proxy-2hwrl

kube-proxy-tg0f3

kube-proxy-zZvnrz
kube-scheduler-ip-10-1-1-4
kubernetes-dashboard-3203962772-4n21j
weave-net-1t4&n

weave-net-619r2

weave-net-tmfsf
ubuntu@ip-10-1-1-4:~§ ||

RERDY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
4/4
1/1
1/1
1/1
1/1
1/1
2/z
2/z
2/z

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

OO 00 0om-]

R

8

[BT =T I =]

AGE

5d

FEEE

5d
5d
1h
5d
5d
5d
5d
5d
4d
5d
5d
5d

_images/f5-container-connector-access-app.png
@“ Demo App x

& C | ® 10.1.1080
Apps) Kubernetes Dashboz

Frontend App

Welcome to Demo App
This is a very basic demo of a Frontend Application that connects to a Backend Application.
Note that on this page that the Client IP and User-Agent will differ from the next Backend Application.

» Backend App
ServerIP=10.32.0.3

ClientIP=10.38.0.0
Request Headers =
host: 10.1.10.80

user-agent: Mozilla/5.0 (Windows NT 6.3; WinG4; x64) AppleWebKit/537.36 (KHTML, like Gecko)

_images/f5-asp-and-kube-proxy-test-app-backend2.png
B sttt -

© BIG-PO - bigipmylat (X | [3 Usage—F5 Container . x) (® Demo App

C | ® 10.1.10.80,

Bpps © Kubernetes Dashbos

Backend App

Welcome to Demo App
This is a very basic dema of a Backend Application that shauld only be accessile fram a Frontend Application
Note that on this page that the Client IP and User-Agent wil differ fram the Frontend Application

« Erontend App
Server IP = 10.40.0.3

Client IP = 10.40.0.0
Request Headers =
host: my-hackend
user-agent: Frontend App/1.0
seforwarded-for: 10.40.0.0, “f.1040.0.2

is not genuine

— T2 M
£7star s
ﬂ Mﬁm (2 B oy =

_images/f5-container-connector-bigip-secret.png
root@ip-10-1-1-4:~% kubectl create secret generic bigip-login
secret "bigip-login® created
zootbip-10-1-1-%1-¢ |

namespace kube-system --from-literal=username=admin --from-literal=password=admin

_images/f5-container-connector-bigip-partition-setup.png
D Kubernetes Dashbos:

o my
101,10,

OHLINE (ACTIVE)
Standalone

Traffic

oration

//10.0.10.60/xwi/

adrin
Adminstretor

System »» Users : Partition List

 Name

Common

O kubemetes

Delete.

_static/cluster-setup-guide-access-ui.png
/@ Kubernetes Dashboard X \; \

&« c |® 10.1.10.11:31578/#/mode?namespace=default

kubernetes Admin > Nodes
Admin
Nodes
Mamespaces
Nodas MNamea Labals Raady
Parsistent Volumes hata kubarnates.iofarch: amdadd
hata kubernates.iofos: linux
Q master] True
Marnespace kubeadm.alpha.kuberetes.io/role: master
default kubarnetes.io/hostname: master
hata kubarnates.iofarch: amdadd
Workloads Q noda hata kubernates.iofos: linux True
Deployments kubarnetes.io/ho sthama: nodel
Replica Sets beta.kubernetes.io/arch: amd64
Replication Controllars Q nodaZ? hata kubernates.iofos: linux True

kubernates.io/hostname: node?
Daemon Sats

Stateful Sats
Jabs

Pods
Services and discovery

Services

Ingresses

Storage

_static/cluster-setup-guide-check-port-ui.png
rootfimasterl:~# kubectl describe sve kubernetes-dashboard -n kube-system

Hame : kubernetes-dashhoard
Namespace: kube-system

Lakels: app=kubernetes-dashboard
Selector: app=kubernetes-dashboard
Type: NodeFort

IF: 10.101.200.219

Port: <unset> S0/TCP

HNodePort: <unset> 31575/ TCP
Endpoints: 10.32.0.2:9090

SGession Affinity: None

No ewvents.
rootlmasterl: ~# I

_static/back_cover.png
FASTER.
WE MAKE APPS G‘ Chinkrte

F5 Networks, Inc. | f5.com

US Headquarters: 401 Elliott Ave W, Seattle, WA 98119 | 888-882-4447 // Americas: inffo@f5.com // Asia-Pacific: apacinfo@f5.com // B com // Japan: f5j-info@f5.com
©2017 F5 Networks, Inc. All rights reserved. F5, F5 Networks, and the F5 logo are trademarks of F5 Networks, Inc. in the U.S. and in certain other i Other F5 ks are identified at f5.com. Any other
products, services, or company names referenced herein may be trademarks of their respective owners with no or affiliation, exp! or implied, claimed by F5. These training materials and documentation

are F5 Confidential Information and are subject to the F5 Networks Reseller Agreement. You may not share these training materials and documentation with any third party without the express written permission of F5.

_static/cluster-setup-guide-kubeadm-check-pods.png
user@masterl:~§ kubectl get pods --all-namespaces

HANESPACE
iube-systen
lube-systen
lube-systen
lube-systen
lube-systen
lube-systen
lube-systen
lube-systen
lupe-systen

AME
cury-2088944543- 6015w
etcdnasterl
Kube-apiserver-masteri
kube-controller-nanager-masterl
kube-discovery-1150918428-rkaz
Kube-dns-654381707-r8b3 1
kube-flannel-ds-3i6le

o ——
kube-scheduler-masterl

S

RELDY
1
1
1
1
1
2/3
2/2
1
1

sTATUS
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTLRTS

e
2n
i
2n
2n
2n
2n
32m
2n
2n

_static/select-change-keyboard.png
& » Control Panel » Clock,Langusge, and Region » Language

Search Control Panel

Home

ngs

ime, or number

Change your language preferences

‘Add languages you want to use to this list, The language at the top of your st is your primary language (the one you want to see and use most often).

Addalanguage Remove Moveup Move down

English (United
States)

Windows display language: Enabled
Keyboard layout: US
Date, time, and number formatting

Options.

_static/select-region-language.png
Search

erywhere

Language
Switch input language
Region

Add alanguage

e W

_static/plus.png

_static/Launch-RDP.png
jumpbox
Windows Server 2012 R2

>
Running
ACCESS v DETAILS
——— —

RDP

_static/ajax-loader.gif

_static/up-pressed.png

_static/up.png

_images/f5-asp-and-kube-proxy-create-f5-kube-proxy.png
ubuntu@ip-10-1-1-4:~% kubectl get pods -n kube-system

HAME

dummy-2088944543-jwszp
etcd-ip-10-1-1-4

f5-asp-2dzhc

f5-asp-159%6z

f5-asp-wgTxc
k8s-bigip-ctlr-deployment-710074254-b%dr8
kube-apiserver-ip-10-1-1-4
kube-controller-manager-ip-10-1-1-4
kube-discovery-1769846148-xph2r
kube-dns-29242995975-rzn22
kube-proxy-14ktc3

kube-proxy-mm3f0

kube-proxy-xklkx
kube-scheduler-ip-10-1-1-4
kubernetes-dashboard-3203962772-4n21j
weave-net-1t4én

weave-net-619r2

weave-net-tmfsf
ubuntu@ip-10-1-1-4:~§ ||

RERDY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
4/4
1/1
1/1
1/1
1/1
1/1
2/z
2/z
2/z

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

OO 00 0om-]

R

8

MW o oo

5d

gged

5d
5d
1h
5d
20s
20s
20s
5d
4d
5d
5d
5d

_images/cluster-setup-guide-test-sock-shop-status.png
rootfmasterl:~# kubectl get pods -n sock-shop

HNAME

cart-379515391-pchlr
cart-db-20535159580-bms 4w
catalogue-3244713806-9f023
catalogue—-db-22906583463 —gg3zw
front-end-2321593771-khnn9
orders-44595342 40-gubdb
orders-db-3277638702-bxl3t
payment—-102592 6443 —zdff1
gquene-master-2973691953-h3119
rabhitmg-34720393 65—z 1nmog
shipping-2723739431-njr0j
user-99712959-5hent
user-dh-327013675-0ztla
zipkin—lZSS?DZSSE—dzgnr

RELDY
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

STALTUS
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
ContainerCreating
Running
ContainerCreating
ContainerCreating

REZTARTS

o |

AGE
15=
15=
14=
14=
14=
14=
14=
1i=
1i=
1i=
1i=
1lm

1lm

1lm

_images/f5-asp-and-kube-proxy-deploy-app.png
rootimaster.

kubectl get deployment my-backend

ay-backend

CURRENT = UP-TO-DATE IVAILABLE
2 2

kubectl describe sve my-backend

rootimaster

Newespace:

selector:

Endpoints:
Session AEfinity:
Mo events.

roothuasteri:

my-backend
default

ClusterIp
10.100.178.121

meep 80/TCR
10.40.0.3:60,10.46.0.4:80
None

_images/f5-asp-and-kube-proxy-delete-origin-kube-proxy.png
ubuntu@ip-10-1-1-4:~§ kubectl get pods -n kube-system

HAME

dummy-2088944543-jwszp
etcd-ip-10-1-1-4

f5-asp-2dzhc

f5-asp-159%6z

f5-asp-wgTxc
k8s-bigip-ctlr-deployment-710074254-b%dr8
kube-apiserver-ip-10-1-1-4
kube-controller-manager-ip-10-1-1-4
kube-discovery-1769846148-xph2r
kube-dns-29242995975-rzn22
kube-scheduler-ip-10-1-1-4
kubernetes-dashboard-3203962772-4n21j
weave-net-1t4&n

weave-net-619r2

weave-net-tmfsf
ubuntu@ip-10-1-1-4:~§ ||

RERDY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
4/4
1/1
1/1
2/z
2/z
2/z

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

OO 00 0om-]

ok
[=:]

20
15

AGE

5d

gEEe

5d
5d
1h
5d
5d
4d
5d
5d
5d

_static/minus.png

_images/cluster-setup-guide-access-ui.png
/@ Kubernetes Dashboard X \; \

&« c |® 10.1.10.11:31578/#/mode?namespace=default

kubernetes Admin > Nodes
Admin
Nodes
Mamespaces
Nodas MNamea Labals Raady
Parsistent Volumes hata kubarnates.iofarch: amdadd
hata kubernates.iofos: linux
Q master] True
Marnespace kubeadm.alpha.kuberetes.io/role: master
default kubarnetes.io/hostname: master
hata kubarnates.iofarch: amdadd
Workloads Q noda hata kubernates.iofos: linux True
Deployments kubarnetes.io/ho sthama: nodel
Replica Sets beta.kubernetes.io/arch: amd64
Replication Controllars Q nodaZ? hata kubernates.iofos: linux True

kubernates.io/hostname: node?
Daemon Sats

Stateful Sats
Jabs

Pods
Services and discovery

Services

Ingresses

Storage

_images/cluster-setup-guide-check-port-ui.png
rootfimasterl:~# kubectl describe sve kubernetes-dashboard -n kube-system

Hame : kubernetes-dashhoard
Namespace: kube-system

Lakels: app=kubernetes-dashboard
Selector: app=kubernetes-dashboard
Type: NodeFort

IF: 10.101.200.219

Port: <unset> S0/TCP

HNodePort: <unset> 31575/ TCP
Endpoints: 10.32.0.2:9090

SGession Affinity: None

No ewvents.
rootlmasterl: ~# I

_images/Launch-RDP.png
jumpbox
Windows Server 2012 R2

>
Running
ACCESS v DETAILS
——— —

RDP

_images/cluster-setup-guide-kubeadmin-init-check-cluster-info.png
rootfmasterl:~# kubectl cluster—-info
Fubernetes waster is running at http://localhost:S080
FubeDlZ is running at http://localhost:8050/api/v1/ proxy/ namespaces/ kube-systen/ services/ kube-dns

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump' .

_images/cluster-setup-guide-kubeadm-init-master.png
login as: root
rootf10.1.1.1's password:
Welcomwe to Ubuntu 16.04.1 LTS (GMNU/Linux 4.4.0-59-generic xE6_64)

* Documentation: https://help.ubuntu.com

¥ Management : https:// landscape.canonical . com

* Support: https://ubuntu. com/ advantage
Last login: Mon Jan 30 09:15:26 2017 from 10.1.1.4
rootimasterl:~# service apparmor sStatus
® apparmor.service

Loaded: not-found (REeason: No such file or directory)
Aotive: inactive (dead)

rootimasterl:~# kubeadm init --api-advertise-addresses=10.1.10.11

[kubeadm] WARNING: kubeadm i=s in alpha, please do not use it for production clusters.
[preflight] Running pre-flight checks

[init] Using Kubernetes wversion: v1.5.2

[tokens] Generated token: "62468f.9dfb3fo97a9850£9"

[certificates] Generated Certificate Authority key and certificate.
[certificates] Generated API Server key and certificate

[certificates] Generated Z3ervice Account signing kevys

[certificates] Created keys and certificates in "/eto/kubernetes/pki™
[Fubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/kubelet.cont™
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/adwin.conf™
[apiclient] Created API client, waiting for the control plane to become ready
[apiclient] A11 control plane components are healthy after 239.520592 seconds
[apiclient] Waiting for at least one node to register and become ready
[apiclient] First node is ready after 0.505515 seconds

[apiclient] Creating a test deployment

[apiclient] Test deployment succeeded

[token-discovery] Created the kube-discovery deployment, waiting for it to hecome ready
[token-discovery] kube-discovery is ready after 111.002778 seconds

[addons] Created essential addon: kube-proxy

[addons] Created essential addon: kube-dns

Tour Kubernetes master has initialized successfully!

Tou should now deploy a pod network to the cluster.

Fun "kubectl apply -f [podnetwork] .vaml™ with one of the options listed at:
http://kubernetes. io/docs/admin/addons/

Tou can now join any nuwber of machines by running the following on each node:

kubeadm join --token=62465f.9dfb3fc97a9585cES 10.1.10.11
rootimasterl:~# I

_images/cluster-setup-guide-kubeadmin-init-check-cluster-get-pods.png
rootfimasterl:~# kubectl get pods --all-namespaces

NAMEZFPACE

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

HNAME

durmy—-2055544543 -d2vhk
etod-masterl
kube-apiserver-masterl
kube-controller-manager-masterl
kube-discovery-1769546145-01739
kube-dns-2924299975-hgxvd
kube-proxy-1d45£0
kube-scheduler-masterl
weave-net-gg350

rootfmasterl: ~# I

RELDY
141
141
141
141
141
4/ 4
141
141
z/z

STALTUS

Running
Running
Running
Running
Running
Running
Running
Running
Running

REZTARTS

o e e Y S o Y |

AGE
1im
1im
10m
10m
1im
St

St

10m
St

_images/f5-container-connector-locate-controller-container.png
ubuntu@ip-10-1-1-4:~§ kubectl get pods -o wide -n kube-system

HAME

dummy-2088944543-jwszp
etcd-ip-10-1-1-4
k8s-bigip-ctlr-deployment-710074254-b%dr8
kube-apiserver-ip-10-1-1-4
kube-controller-manager-ip-10-1-1-4
kube-discovery-1769846148-mk3pg
kube-discovery-1769846148-mvl1Z2n
kube-discovery-1769846148-xph2r
kube-dns-29242995975-rzn22
kube-proxy-2hwrl

kube-proxy-tg0f3

kube-proxy-zZvnrz
kube-scheduler-ip-10-1-1-4
kubernetes-dashboard-3203962772-4n21j
weave-net-1t4én

weave-net-619r2

weave-net-tmfsf
ubuntu@ip-10-1-1-4:~§ ||

RERDY
1/1
1/1
1/1
1/1
1/1
0/1
0/1
1/1
4/4
1/1
1/1
1/1
1/1
1/1
2/z
2/z
2/z

STATUS

Running

Running

Running

Running

Running
MatchNodeSelector
MatchNodeSelector
Running

Running

Running

Running

Running

Running

Running

Running

Running

Running

RESTARTS

00 O0omomoO W -]

R

8

[BT =T I =]

AGE

5d
5d

5d
5d
3d
id
25m
5d
5d
5d
5d
5d
3d
5d
5d
5d

IF

10.1.10.
10.1.10.
10.40.0.
10.1.10.
10.1.10.

<none>
<none>

10.1.10.
10.32.0.
-21

10.1.10

10.1.10.
.22

10.1.10

10.1.10.
10.32.0.
.22
-21

10.1.10
10.1.10

10.1.10.

11
11

11

11

11

11

11

11

HCDE
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-5
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-5
ip-10-1-1-4
ip-10-1-1-6
ip-10-1-1-4
ip-10-1-1-4
ip-10-1-1-6
1-1-5
1-1-4

_images/f5-container-connector-list-frontend-iptables.png
ubuntu@ip-10-1-1-4:~§ sudo iptables-save | grep my-frontend

—A EUBE-NODEPORTS -p tcp -m comment ——comment "default/my-frontend:"™ -m tcp —--dport 32402 -j KUBE-MARE-MASQ

—A EUBE-NODEPORTS -p tcp -m comment —-comment "default/my-frontend:"™ -m tcp —-dport 32402 -j KUBE-SVC-E6EDICWYQONVE3T2

—A KUBE-SEP-2HDQICJSYHERTEX6 -=s 10.40.0.1/32 -m comment --comment "default/my-frontend:" -j KUBE-MARE-MASQ

—A KUBE-SEP-2HDQICJSYHERTEX6 -p tcp -m comment —-comment "default/my-frontend:™ -m tcp -j DNAT --to-destination 10.40.0.1:80

—A KUBE-SEP-46DFEBNQHPUSHZCM -s 10.32.0.3/32 -m comment --comment "default/my-frontend:" -j KUBE-MARE-MASQ

—A KUBE-SEP-46DFEBNQHPUSHZCM -p tcp -m comment —-comment "default/my-frontend:™ -m tcp -j DNAT --to-destination 10.32.0.3:80

-L KUBE-SERVICES ! -= 10.32.0.0/12 -d 10.105.100.7/32 -p tcp -m comment —--—comment "default/my-frontend: cluster IP" -m tcp —-dport 80 -j KUBE-MARE-MASQ
-A EKUBE-SERVICES -d 10.105.100.7/32 -p tcp -m comment --comment "default/my-frontend: cluster IP"™ -m tcp —-dport 80 -j KUBE-SVC-E6EDICWYQONVE3T2

—A KUBE-SVC-EGEDICWYQONVE3T72 -m comment --comment "default/my-frontend:"™ -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-46DFEBNQHPUSHZCM
—L KUBE-SVC-E6EDICWYQONVE3T72 -m comment —-comment "default/my-frontend:"™ -j EUBE-SEP-2HDQICJSYHERTEXGE

_images/select-change-keyboard.png
& » Control Panel » Clock,Langusge, and Region » Language

Search Control Panel

Home

ngs

ime, or number

Change your language preferences

‘Add languages you want to use to this list, The language at the top of your st is your primary language (the one you want to see and use most often).

Addalanguage Remove Moveup Move down

English (United
States)

Windows display language: Enabled
Keyboard layout: US
Date, time, and number formatting

Options.

_images/getting-started-cluster-diagram.png
Cluster Diagram

Node

Oﬁ Master

node processes

Kubernetes cluster

_images/select-region-language.png
Search

erywhere

Language
Switch input language
Region

Add alanguage

e W

_images/f5-container-connector-find-dockerID--controller-container.png
ubuntu@ip-10-1-1-5:~§ sudo docker ps
CONTAINER ID IMAGE COMMAND
7a774293230b 10.1.10.11:5000/k8s-bigip-ctlr:v1.0.0 "/app/bin/k8s-bigip-c"

_images/f5-container-connector-check-logs-kubectl.png
sbuntu@ip-10-1-1-4:~% kubectl logs k8s-bigip-ctlr-deployment-710074254-b9dr8 -n kube-system

2017/03/28
2017/03/28
2017/03/28
2017/03/28
2017/03/28
2017/03/28
2017/03/28

o8:
o8:
o8:
o8:
o8:
o8:
o8:

36:
36:
36:
36:
36:
36:
36:

17
17
17
17
17
17
17

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

tbuntu@ip-10-1-1-4:~§ ||

ConfigWriter started: 0xc420448e40

Started config driver sub-process at pid: 11

NodePoller (0xc42017ab00) registering new listener: 0x4cOel0

NodePoller started: (0xc42017ab00)

ProcessNodeUpdate: Change in Node state detected

Wrote 0 Virtual Server configs

[2017-03-28 08:36:17,456 _ main INFO] entering inotify loop to watch Jtmp/kB8=s-bigip-ctlr.configl74728127/config.json

_images/f5-container-connector-launch-deployment-controller.png
ubuntu@ip-10-1-1-4:~5 kubectl get deployment k8s-bigip-ctlr-deployment --namespace kube-system
HAME DESIRED CURRENT UP-TC-DATE AVATLABLE AGE
k8s-bigip-ctlr-deployment 1 1 1 1 Im

_images/f5-container-connector-launch-app.png
rootlmasterl:~# kubectl create -I my-frontend-deployment.yaml
deployment "my-frontend” created

rootlmasterii~§ kubectl create -f my-frontend-configmap.yaml
sonfigmap "oy-frontend” created

rootlmasteri:~§ kubectl create -f my-frontend-service.yaml
cervice "my-frontend” created

_images/f5-container-connector-launch-ssh.png
Basic options for your PuTTY session

Specify the destination you want to connect to
Host Name (or IP address) Port

22

Connection type:
(O Raw (O Telnet O Rlogin ® S5H (O Serial

Load, save or delete a stored session
Saved Sessions

