
Agility 2018 Hands-on Lab Guide

F5 Solutions for Containers

F5 Networks, Inc.

2

Contents:

1 Getting Started 5

2 Class 1: Introduction to Docker 7

3 Class 2: Introduction to Kubernetes 13

4 Class 3: Introduction to Mesos / Marathon 45

5 Class 4: Introduction to RedHat OpenShift 79

6 Class 5: Advanced Labs for Red Hat OpenShift Container Platform (OCP) 99

3

4

1
Getting Started

Important:

• The instructor will provide the necessary details to connect to lab environment.

• Please follow the instructions provided to start your lab and access your jump host.

• All work for this lab will be performed exclusively from the Windows jumpbox via RDP.

• No installation or interaction with your local system is required.

Attention:

• The lab is based on Ravello blueprint Agility 2018-Containers (Exp Nov 9th,
2018)-vtog-2.2.2

• To access the lab environment follow this link http://training.f5agility.com

• Once you have established remote access to your lab jumpbox, launch Google Chrome and mRe-
moteNG (both have shortcuts on the desktop and taskbar).

Tip: For MAC user, it is recommended to use Microsoft Remote Desktop. You may not be able to access
your jumpbox otherwise. It is available in the App store (FREE).

5

http://training.f5agility.com

Tip: The default keyboard mapping is set to english. If you need to change it, follow these steps:

1. Click on the start menu button and type ‘language’ in the search field

2. Click on ‘Change keyboards or other input methods’ in the search list

3. Click on ‘Change keyboards. . . ’

4. Click ‘Add. . . ’

5. Select the language you want for your keyboard mapping and click ‘OK’

6. Change the ‘Default input language’ in the drop down list to the language added in the previous step

7. Click ‘Apply’ –> Click ‘OK’ –> Click ‘OK’

6

2
Class 1: Introduction to Docker

This introductory class covers the following topics:

2.1 Module 1: Introduction to Docker

2.1.1 Introduction to Docker

Docker and containers have been a growing buzzword in recent years. As companies started asking for
integration with F5, F5 PD resources have been building BIG-IP integration with a BIG-IP controller (more
later in the labs) with a container. Via some configs.yaml files (more later in the labs), you can automate F5
into dynamic services being deployed within your organization as well for both on-prem and cloud locations.

To the question what Docker is, and for you reading that haven’t researched what Docker is, Docker is a
company that figured out to simplify some old linux services into an extremely easy and quick way to deploy
smaller images than entire guest images as we have been doing for the past 10-15 years on hypervisor
systems.

Let us step back for a moment and look at the context of technologies as they apply to I.T. history.
While some products only last moments, others seem to endure forever (COBOL for example – there
are companies still using it today). Some of you reading this will be new to the world of IT, while oth-
ers have seen the progression from mainframes, mini, physical servers, Hypervisors, and as of late
docker/containers/microservices, and serverless. Docker is one of companies’ technology that might not
be the end state of IT, but just like COBOL, this docker technology has the power stay around for a very
long time. In much of the same way that VMWare and other hypervisors over the past dozen or so years
have transformed most businesses physical servers into a world of virtual servers saving cost, floor space,
enabling easier management, ability to support snapshots and many other technologies only dreamed of
decades ago.

In a way, containers are doing what hypervisors did to physical servers. Docker essential development
deploying containers via a simplification of old features of Unix (going back to Sun Solaris or FreeBSD from
early 2000’s with zones and jail to separate users, file system views, and processes). By delivering this
in a container to run specific code i.e. Tomcat, PHP, or WordPress for example. As containers removes
the need to support the Guest OS, this has immediate benefits: running a single file/container with all the
software/code embedded within that “image”. Containers are typically much smaller, faster, and easier to
swap in/out as needed with code upgrades. A decent laptop can spin up a dozen TomCat Apache servers
in about a second with embedded HTML code for your site, or within a few seconds have pulled down new
html code. Lastly, one can update the container image with new HTML code, save the new container. All

7

while saving over a traditional OS and Tomcat install anywhere from 5X to 25X(or more) less memory and
disk requirements.

For today labs at Agility, all these labs will run in the cloud, due to the number of guests needed to
host a few different management platforms for containers (RedHat Openshift, Kubernetes (K8s), and
Mesos/Marathon). Next page we will install Docker and run a small container for a “hello world”.

Side note for your own work after today: Windows versus Linux you are in luck (mostly), containers are
cross platform or “agnostic” of OS that containers run on. If you decide to install Docker on Linux on your
own (as in next page) you install only the Docker Engine and management tools. You don’t need to create
a virtual machine or virtual networks, because Docker via it’s containers will handle the setup for you.

For Windows: having another hypervisor can cause conflicts. During Docker installation, Docker creates a
Linux-based virtual machine called MobyLinuxVM. The Docker application connects to this machine, so that
you can create your container with the necessary apparatus for operation. This installation also configures
a subnet for the virtual machine to communicate with the local network / NAT for your containers to use in
the application. All of these steps occur behind the scenes and, as the user, you don’t really have to worry
about them. Still, the fact that Docker on Windows runs a virtual machine in the background is a major
difference between Docker on Windows and Docker on Linux.

See also:

For more information please come back and visit any of these links below:

https://www.docker.com

https://www.infoworld.com/article/3204171/linux/what-is-docker-linux-containers-explained.html

https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/

Next, we’re going to install Docker and learn some of the basic commands. We’ll do this on a few Ubuntu
servers (Kubernetes VM’s in the lab).

Lab 1.1 Install Docker

Important: The following commands need to be run on all three nodes unless otherwise specified.

1. From the jumpbox open mRemoteNG and start a session to each of the following servers. The
sessions are pre-configured to connect with the default user “ubuntu”.

• kube-master1

• kube-node1

• kube-node2

2. Once connected via CLI(SSH) to ALL three nodes as user ubuntu (it’s the user already setup in the
MremoteNG settings), let’s elevate to root:

su -

#When prompted for password enter "default" without the quotes

8

https://www.docker.com
https://www.infoworld.com/article/3204171/linux/what-is-docker-linux-containers-explained.html
https://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/

Your prompt should change to root@ at the start of the line :

3. Then, to ensure the OS is up to date, run the following command

apt update && apt upgrade -y

Note: This can take a few seconds to several minute depending on demand to download the latest
updates for the OS.

4. Add the docker repo

curl \-fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add \-

add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
→˓$(lsb_release -cs) stable"

5. Install the docker packages

apt update && apt install docker-ce -y

6. Verify docker is up and running

docker run --rm hello-world

If everything is working properly you should see the following message

Hint: If you are not a linux/unix person - don’t worry. What happened above is how linux installs and
updates software. This is ALL the ugly (under the cover steps to install apps, and in this case Docker on

9

a Linux host. Please ask questions as to what really happened, but this is how with linux on ubuntu (and
many other linux flavors) installs applications. Linux uses a term called “package manager”, and there are
many: like PIP, YUM, APT, DPKG, RPM, PACMAN, etc. usually one is more favored by the flavor of linux
(i.e. debian, ubuntu, redhat, gentoo, OpenSuse, etc.), but at the end of the day they all pretty much do the
same thing, download and keep applications updated.

Lab 1.2 Run a Container on Docker

See also:

This is only a very basic introduction to docker. For everything else see Docker Documentation

1. Continuing from where we left off on the jumpbox go back to the kube-master1 session.

2. Now that docker is up and running and confirmed to be working lets deploy the latest Apache web
server.

Note: The docker run command will first look for a local cache of the container httpd, and upon
comparing that copy to the latest instance, decide to either download an update or use the local copy.
Since there is no local copy, docker will download the container httpd to your local cache. This can
take a few seconds (or longer), depending on container size and your bandwidth. Docker will chunk
this into parts called a pull.

--rm “tells docker to remove the container after stopping”

--name “give the container a memorable name”

-d “tells docker to run detached. Without this the container would run in foreground and stop upon
exit”

-it “this allows for interactive process, like shell, used together in order to allocate a tty for the
container process”

-P “tells docker to auto assign any required ephemeral port and map it to the container”

docker run --rm --name "myapache" -d -it -P httpd:latest

3. If everything is working properly you should see your container running.

Note: -f “lets us filter on key:pair”

docker ps -f name=myapache

Note: The “PORTS” section shows the container mapping. In this case the nodes local IP and port
32768 are mapped to the container. We can use this info to connect to the container in the next step.

4. The httpd container “myapache, is running on kube-master1 (10.1.10.21) and port 32768. To test,
connect to the webserver via chrome.

10

https://docs.docker.com/
https://hub.docker.com/_/httpd/
https://hub.docker.com/_/httpd/

http://ip:port

Attention: That’s it, you installed docker, downloaded a container, ran the Hello World container, ran a
web server container, and accessed your web server container via the browser.

Expected time to complete: 15 minutes

2.2 Lab Setup

We will leverage the kubernetes VM’s to configure the Docker environment.

Hostname IP-ADDR Credentials
jumpbox 10.1.1.250 user/Student!Agility!
bigip1 10.1.1.245

10.1.10.60
admin/admin
root/default

kube-master1 10.1.10.21 ubuntu/ubuntu
root/default

kube-node1 10.1.10.22 ubuntu/ubuntu
root/default

kube-node2 10.1.10.23 ubuntu/ubuntu
root/default

11

12

3
Class 2: Introduction to Kubernetes

This introductory class covers the following topics:

3.1 Module 1: Introduction to Kubernetes

The purpose of this module is to give you a basic understanding of kubernetes concepts and components

3.1.1 Kubernetes Overview

Kubernetes has a lot of documentation available at this location: Kubernetes docs

On this page, we will try to provide all the relevant information to deploy successfully a cluster (Master +
nodes)

Overview

Extract from: Kubernetes Cluster Intro

Kubernetes coordinates a highly available cluster of computers that are connected to work as a single unit.
The abstractions in Kubernetes allow you to deploy containerized applications to a cluster without tying
them specifically to individual machines. To make use of this new model of deployment, applications need
to be packaged in a way that decouples them from individual hosts: they need to be containerized.

Containerized applications are more flexible and available than in past deployment models, where appli-
cations were installed directly onto specific machines as packages deeply integrated into the host. Kuber-
netes automates the distribution and scheduling of application containers across a cluster in a more efficient
way. Kubernetes is an open-source platform and is production-ready.

A Kubernetes cluster consists of two types of resources:

• The Master coordinates the cluster

• Nodes are the workers that run applications

13

http://kubernetes.io/docs/
http://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-intro/

The Master is responsible for managing the cluster. The master coordinates all activity in your cluster,
such as scheduling applications, maintaining applications’ desired state, scaling applications, and rolling
out new updates.

A node is a VM or a physical computer that serves as a worker machine in a Kubernetes cluster.
Each node has a Kubelet, which is an agent for managing the node and communicating with the Kubernetes
master. The node should also have tools for handling container operations, such as Docker or rkt. A
ubernetes cluster that handles production traffic should have a minimum of three nodes.

Masters manage the cluster and the nodes are used to host the running applications.

When you deploy applications on Kubernetes, you tell the master to start the application containers. The
master schedules the containers to run on the cluster’s nodes. The nodes communicate with the master
using the Kubernetes API, which the master exposes. End users can also use the Kubernetes API directly
to interact with the cluster.

Kubernetes concepts

Extract from Kubernetes concepts

Cluster: Kubernetes Cluster A cluster is a set of physical or virtual machines and other infrastructure
resources used by Kubernetes to run your applications.

14

http://kubernetes.io/docs/user-guide/
https://kubernetes.io/docs/admin/

Namespace: Kubernetes Namespace Kubernetes supports multiple virtual clusters backed by the same
physical cluster. These virtual clusters are called namespaces. Namespaces are intended for use in en-
vironments with many users spread across multiple teams, or projects. For clusters with a few to tens of
users, you should not need to create or think about namespaces at all. Start using namespaces when
you need the features they provide. Namespaces provide a scope for names. Names of resources need
to be unique within a namespace, but not across namespaces. Namespaces are a way to divide cluster
resources between multiple uses

Node: Kubernetes Node A node is a physical or virtual machine running Kubernetes, onto which pods can
be scheduled. It was previously known as Minion

Pod: Kubernetes Pods A pod is a co-located group of containers and volumes. The applications in a
pod all use the same network namespace (same IP and port space), and can thus find each other and
communicate using localhost. Because of this, applications in a pod must coordinate their usage of ports.
Each pod has an IP address in a flat shared networking space that has full communication with other
physical computers and pods across the network. In addition to defining the application containers that run
in the pod, the pod specifies a set of shared storage volumes. Volumes enable data to survive container
restarts and to be shared among the applications within the pod.

Label: Kubernetes Label and Selector A label is a key/value pair that is attached to a resource, such as a
pod, to convey a user-defined identifying attribute. Labels can be used to organize and to select subsets of
resources.

Selector: Kubernetes Label and Selector A selector is an expression that matches labels in order to identify
related resources, such as which pods are targeted by a load-balanced service.

deployments: Kubernetes deployments A Deployment provides declarative updates for Pods and Replica
Sets (the next-generation Replication Controller). You only need to describe the desired state in a Deploy-
ment object, and the Deployment controller will change the actual state to the desired state at a controlled
rate for you. You can define Deployments to create new resources, or replace existing ones by new ones.
A typical use case is:

• Create a Deployment to bring up a Replica Set and Pods.

• Check the status of a Deployment to see if it succeeds or not.

• Later, update that Deployment to recreate the Pods (for example, to use a new image).

• Rollback to an earlier Deployment revision if the current Deployment isn’t stable.

• Pause and resume a Deployment

ConfigMap: Kubernetes ConfigMap Any applications require configuration via some combination of con-
fig files, command line arguments, and environment variables. These configuration artifacts should be
decoupled from image content in order to keep containerized applications portable. The ConfigMap API
resource provides mechanisms to inject containers with configuration data while keeping containers ag-
nostic of Kubernetes. ConfigMap can be used to store fine-grained information like individual properties or
coarse-grained information like entire config files or JSON blobs

Replication Controller: Kubernetes replication controller A replication controller ensures that a specified
number of pod replicas are running at any one time. It both allows for easy scaling of replicated systems
and handles re-creation of a pod when the machine it is on reboots or otherwise fails.

Service: Kubernetes Services A service defines a set of pods and a means by which to access them, such
as single stable IP address and corresponding DNS name. Kubernetes pods are mortal. They are born
and they die, and they are not resurrected. Replication Controllers in particular create and destroy pods
dynamically (e.g. when scaling up or down or when doing rolling updates). While each pod gets its own IP
address, even those IP addresses cannot be relied upon to be stable over time. This leads to a problem: if
some set of pods (let’s call them backends) provides functionality to other pods (let’s call them frontends)
inside the Kubernetes cluster, how do those frontends find out and keep track of which backends are in

15

https://kubernetes.io/docs/user-guide/namespaces/
https://kubernetes.io/docs/admin/node/
https://kubernetes.io/docs/user-guide/pods/
https://kubernetes.io/docs/user-guide/labels/
https://kubernetes.io/docs/user-guide/labels/
https://kubernetes.io/docs/user-guide/deployments/
https://kubernetes.io/docs/user-guide/configmap/
https://kubernetes.io/docs/user-guide/replication-controller/
https://kubernetes.io/docs/user-guide/services/

that set? Enter Services. A Kubernetes service is an abstraction which defines a logical set of pods and a
policy by which to access them - sometimes called a micro-service. The set of pods targeted by a service
is (usually) determined by a label selector

Volume: Kuebernetes volume A volume is a directory, possibly with some data in it, which is accessible to
a Container as part of its filesystem. Kubernetes volumes build upon Docker Volumes, adding provisioning
of the volume directory and/or device.

3.1.2 Kubernetes Networking Overview

This is an extract from Networking in Kubernetes

Summary

Kubernetes assumes that pods can communicate with other pods, regardless of which host they land on.
We give every pod its own IP address so you do not need to explicitly create links between pods and you
almost never need to deal with mapping container ports to host ports. This creates a clean, backwards-
compatible model where pods can be treated much like VMs or physical hosts from the perspectives of port
allocation, naming, service discovery, load balancing, application configuration, and migration

Docker Model

Before discussing the Kubernetes approach to networking, it is worthwhile to review the “normal” way that
networking works with Docker.

By default, Docker uses host-private networking. It creates a virtual bridge, called docker0 by default, and
allocates a subnet from one of the private address blocks defined in RFC1918 for that bridge. For each
container that Docker creates, it allocates a virtual ethernet device (called veth) which is attached to the
bridge. The veth is mapped to appear as eth0 in the container, using Linux namespaces. The in-container
eth0 interface is given an IP address from the bridge’s address range. The result is that Docker containers
can talk to other containers only if they are on the same machine (and thus the same virtual bridge).
Containers on different machines can not reach each other - in fact they may end up with the exact same
network ranges and IP addresses. In order for Docker containers to communicate across nodes, they must
be allocated ports on the machine’s own IP address, which are then forwarded or proxied to the containers.
This obviously means that containers must either coordinate which ports they use very carefully or else be
allocated ports dynamically.

Kubernetes Model

Coordinating ports across multiple containers is very difficult to do at scale and exposes users to cluster-
level issues outside of their control. Dynamic port allocation brings a lot of complications to the system
- every application has to take ports as flags, the API servers have to know how to insert dynamic port
numbers into configuration blocks, services have to know how to find each other, etc. Rather than deal with
this, Kubernetes takes a different approach.

Kubernetes imposes the following fundamental requirements on any networking implementation (barring
any intentional network segmentation policies):

• All containers can communicate with all other containers without NAT

• All nodes can communicate with all containers (and vice-versa) without NAT

• The IP that a container sees itself as is the same IP that others see it as

16

https://kubernetes.io/docs/user-guide/volumes/
http://http://kubernetes.io/docs/admin/networking/
https://tools.ietf.org/html/rfc1918

• What this means in practice is that you can not just take two computers running Docker and expect
Kubernetes to work. You must ensure that the fundamental requirements are met.

Kubernetes applies IP addresses at the Pod scope - containers within a Pod share their network names-
paces - including their IP address. This means that containers within a Pod can all reach each other’s ports
on localhost. This does imply that containers within a Pod must coordinate port usage, but this is no dif-
ferent than processes in a VM. We call this the IP-per-pod model. This is implemented in Docker as a pod
container which holds the network namespace open while “app containers” (the things the user specified)
join that namespace with Docker’s –net=container:<id> function

How to achieve this

There are a number of ways that this network model can be implemented. Here is a list of possible options:

• Contiv Netplugin

• Flannel

• Open vSwitch

• Calico

• Romana

• Weave Net

• L2 networks and linux bridging

Important: For this lab, we will use Flannel.

3.1.3 Kubernetes Services Overview

Refer to Kubernetes services for more information

A Kubernetes service is an abstraction which defines a logical set of pods and a policy by which to access
them. The set of pods targeted by a service is (usually) determined by a label selector.

As an example, consider an image-processing backend which is running with 3 replicas. Those replicas are
fungible - frontends do not care which backend they use. While the actual pods that compose the backend
set may change, the frontend clients should not need to be aware of that or keep track of the list of backends
themselves. The service abstraction enables this decoupling.

For Kubernetes-native applications, Kubernetes offers a simple Endpoints API that is updated whenever the
set of pods in a service changes. For non-native applications, Kubernetes offers a virtual-IP-based bridge
to services* which redirects to the backend pods.

Defining a service

A service in Kubernetes is a REST object, similar to a pod. Like all of the REST objects, a service definition
can be POSTed to the apiserver to create a new instance. For example, suppose you have a set of pods
that each expose port 9376 and carry a label “app=MyApp”.

1 {
2 "kind": "Service",
3 "apiVersion": "v1",
4 "metadata": {

17

https://github.com/contiv/netplugin
https://github.com/coreos/flannel#flannel
https://www.openvswitch.org/
http://docs.projectcalico.org/
http://romana.io/
https://www.weave.works/products/weave-net/
http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/
http://kubernetes.io/docs/user-guide/services/

5 "name": "my-service"
6 },
7 "spec": {
8 "selector": {
9 "app": "MyApp"

10 },
11 "ports": [
12 {
13 "protocol": "TCP",
14 "port": 80,
15 "targetPort": 9376
16 }
17]
18 }
19 }

This specification will create a new service object named “my-service” which targets TCP port 9376 on any
pod with the “app=MyApp” label.

This service will also be assigned an IP address (sometimes called the cluster IP), which is used by the
service proxies . The service’s selector will be evaluated continuously and the results will be POSTed to an
Endpoints object also named “my-service”.

If the service is not a native kubernetes app, then you can do a service definition without the selector field.
In such a case you’ll have to specify yourself the endpoints

1 {
2 "kind": "Service",
3 "apiVersion": "v1",
4 "metadata": {
5 "name": "my-service"
6 },
7 "spec": {
8 "ports": [
9 {

10 "protocol": "TCP",
11 "port": 80,
12 "targetPort": 9376
13 }
14]
15 }
16 }
17

18 {
19 "kind": "Endpoints",
20 "apiVersion": "v1",
21 "metadata": {
22 "name": "my-service"
23 },
24 "subsets": [
25 {
26 "addresses": [
27 { "ip": "1.2.3.4" }
28],
29 "ports": [
30 { "port": 9376 }
31]
32 }

18

33]
34 }

Note: A service can map an incoming port to any targetPort. By default the targetPort will be set to the
same value as the port field. In the example above, the port for the service is 80 (HTTP) and will redirect
traffic to port 9376 on the Pods

You can specify multiple ports if needed (like HTTP/HTTPS for an app)

Kubernetes service supports TCP (default) and UDP.

Publishing services - service types

For some parts of your application (e.g. frontends) you may want to expose a Service onto an external
(outside of your cluster, maybe public internet) IP address, other services should be visible only from inside
of the cluster.

Kubernetes ServiceTypes allow you to specify what kind of service you want. The default and base
type is *ClusterIP*, which exposes a *service* to connection from inside the cluster. NodePort and
LoadBalancer are two types that expose services to external traffic.

Valid values for the ServiceType field are:

• ExternalName: map the service to the contents of the externalName field (e.g. foo.bar.example.com),
by returning a CNAME record with its value. No proxying of any kind is set up. This requires version
1.7 or higher of kube-dns.

• ClusterIP: use a cluster-internal IP only - this is the default and is discussed above. Choosing this
value means that you want this service to be reachable only from inside of the cluster.

• NodePort: on top of having a cluster-internal IP, expose the service on a port on each node of the
cluster (the same port on each node). You’ll be able to contact the service on any <NodeIP>:NodePort
address. If you set the type field to “NodePort”, the Kubernetes master will allocate a port from a flag-
configured range (default: 30000-32767), and each Node will proxy that port (the same port number
on every Node) into your Service. That port will be reported in your Service’s spec.ports[*].nodePort
field. If you want a specific port number, you can specify a value in the nodePort field, and the system
will allocate you that port or else the API transaction will fail (i.e. you need to take care about possible
port collisions yourself). The value you specify must be in the configured range for node ports.

• LoadBalancer: on top of having a cluster-internal IP and exposing service on a NodePort also, ask
the cloud provider for a load balancer which forwards to the Service exposed as a <NodeIP>:NodePort
for each Node

Service type: LoadBalancer

On cloud providers which support external load balancers, setting the type field to “LoadBalancer” will pro-
vision a load balancer for your Service. The actual creation of the load balancer happens asynchronously,
and information about the provisioned balancer will be published in the Service’s status.loadBalancer field.
For example:

1 {
2 "kind": "Service",
3 "apiVersion": "v1",
4 "metadata": {

19

5 "name": "my-service"
6 },
7 "spec": {
8 "selector": {
9 "app": "MyApp"

10 },
11 "ports": [
12 {
13 "protocol": "TCP",
14 "port": 80,
15 "targetPort": 9376,
16 "nodePort": 30061
17 }
18],
19 "clusterIP": "10.0.171.239",
20 "loadBalancerIP": "78.11.24.19",
21 "type": "LoadBalancer"
22 },
23 "status": {
24 "loadBalancer": {
25 "ingress": [
26 {
27 "ip": "146.148.47.155"
28 }
29]
30 }
31 }
32 }

Traffic from the external load balancer will be directed at the backend Pods, though exactly how that works
depends on the cloud provider (AWS, GCE, . . .). Some cloud providers allow the loadBalancerIP to be
specified. In those cases, the load-balancer will be created with the user-specified loadBalancerIP. If the
loadBalancerIP field is not specified, an ephemeral IP will be assigned to the loadBalancer. If the loadBal-
ancerIP is specified, but the cloud provider does not support the feature, the field will be ignored

Service proxies

Every node in a Kubernetes cluster runs a kube-proxy. kube-proxy is responsible for implementing a form
of virtual IP for Services

Since Kubernetes 1.2, the iptables proxy is the default behavior (another implementation of kube-proxy is
the userspace implementation)

In this mode, kube-proxy watches the Kubernetes master for the addition and removal of Service and
Endpoints objects. For each*Service*, it installs iptables rules which capture traffic to the Service’s cluster
IP (which is virtual) and Port and redirects that traffic to one of the Service’s backend sets. For each
Endpoints object, it installs iptables rules which select a backend Pod.

By default, the choice of backend is random. Client-IP based session affinity can be selected by setting
service.spec.sessionAffinity to “ClientIP” (the default is “None”).

As with the userspace proxy, the net result is that any traffic bound for the Service’s IP:Port is proxied to
an appropriate backend without the clients knowing anything about Kubernetes or Services or Pods. This
should be faster and more reliable than the userspace proxy. However, unlike the userspace proxier, the
iptables proxier cannot automatically retry another Pod if the one it initially selects does not respond, so it
depends on having working readiness probes. A readiness probe gives you the capability to monitor the
status of a pod via health-checks

20

Service discovery

The recommended way to implement Service discovery with Kubernetes is the same as with Mesos: DNS

when building a cluster, you can add add-on to it. One of the available add-on is a DNS Server.

The DNS server watches the Kubernetes API for new Services and creates a set of DNS records for each.
If DNS has been enabled throughout the cluster then all Pods should be able to do name resolution of
Services automatically.

For example, if you have a Service called “my-service” in Kubernetes Namespace “my-ns” a DNS record
for “my-service.my-ns” is created. Pods which exist in the “my-ns” Namespace should be able to find it by
simply doing a name lookup for “my-service”. Pods which exist in other Namespaces must qualify the name
as “my-service.my-ns”. The result of these name lookups is the cluster IP.

Kubernetes also supports DNS SRV (service) records for named ports. If the “my-service.my-ns” Service
has a port named “http” with protocol TCP, you can do a DNS SRV query for “_http._tcp.my-service.my-ns”
to discover the port number for “http”

3.2 Module 2: Build a Kubernetes Cluster

In this module, we will build a 3 node cluster (1x master and 2x nodes) utilizing Ubuntu server images.

As a reminder, in this module, our cluster setup is:

Hostname IP-ADDR Role
kube-master1 10.1.10.21 Master
kube-node1 10.1.10.22 Node
kube-node2 10.1.10.23 Node

3.2.1 Lab 2.1 - Prep Ubuntu

Note: This installation will utilize Ubuntu v18.04 (Bionic)

Important: The following commands need to be run on all three nodes unless otherwise specified.

1. From the jumpbox open mRemoteNG and start a session to each of the following servers. The
sessions are pre-configured to connect with the default user “ubuntu”.

• kube-master1

• kube-node1

• kube-node2

Tip: These sessions should be running from the previous Docker lab.

21

2. If not already done from the previous Docker lab elevate to “root”

su -

#When prompted for password enter "default" without the quotes

Your prompt should change to root@ at the start of the line :

3. For your convenience we’ve already added the host IP & names to /etc/hosts. Verify the file

cat /etc/hosts

The file should look like this:

If entries are not there add them to the bottom of the file be editing “/etc/hosts” with ‘vim’

vim /etc/hosts

#cut and paste the following lines to /etc/hosts

10.1.10.21 kube-master1
10.1.10.22 kube-node1
10.1.10.23 kube-node2

4. The linux swap file needs to be disabled, this is not the case by default. Again for your convenience
we disabled swap. Verify the setting

Important: Running a swap file is incompatible with Kubernetes. Lets use the linux top command,
which allows users to monitor processes and system resource usage

top

22

If you see a number other than “0” you need to run the following commands (press ‘q’ to quit top)

swapoff -a

vim /etc/fstab

#rem out the highlighted line below by adding "#" to the beginning of the line,
→˓write and save the file by typing ":wq"

5. Ensure the OS is up to date, run the following command

Tip: You can skip this step if it was done in the previous Docker lab.

apt update && apt upgrade -y

#This can take a few seconds to several minute depending on demand to download
→˓the latest updates for the OS.

6. Install docker-ce

Attention: This was done earlier in Class 1 / Module1 / Lab 1.1: Install Docker . If skipped go
back and install Docker by clicking the link.

7. Configure docker to use the correct cgroupdriver

Important: The cgroupdrive for docker and kubernetes have to match. In this lab “cgroupfs” is the
correct driver.

Note: This next part can be a bit tricky - just copy/paste the 5 lines below exactly as they are and
paste via buffer to the CLI (and press return when done)

cat << EOF > /etc/docker/daemon.json
{
"exec-opts": ["native.cgroupdriver=cgroupfs"]
}
EOF

It should look something like this image below:

23

../../class1/module1/lab1.html

8. Add the kubernetes repo

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -

cat <<EOF > /etc/apt/sources.list.d/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF

9. Install the kubernetes packages

apt update && apt install kubelet kubeadm kubectl -y

Limitations

See also:

For a full list of the limitations go here: kubeadm limitations

Important: The cluster created has a single master, with a single etcd database running on it. This means
that if the master fails, your cluster loses its configuration data and will need to be recreated from scratch.

3.2.2 Lab 2.2 - Setup the Master

The master is the system where the “control plane” components run, including etcd (the cluster database)
and the API server (which the kubectl CLI communicates with). All of these components run in pods started
by kubelet (which is why we had to setup docker first even on the master node)

Important: The following commands need to be run on the master only unless otherwise specified.

1. Switch back to the ssh session connected to kube-master1

Tip: This session should be running from the previous if lab. If not simply open mRemoteNG and
connect via the saved session.

2. Initialize kubernetes

kubeadm init --apiserver-advertise-address=10.1.10.21 --pod-network-cidr=10.244.0.
→˓0/16

Note:

24

http://kubernetes.io/docs/getting-started-guides/kubeadm/#limitations

• The IP address used to advertise the master. 10.1.10.0/24 is the network for our control plane. if
you don’t specify the –apiserver-advertise-address argument, kubeadm will pick the first interface
with a default gateway (because it needs internet access).

• 10.244.0.0/16 is the default network used by flannel. We’ll setup flannel in a later step.

• Be patient this step takes a few minutes. The initialization is successful if you see “Your Kuber-
netes master has initialized successfully!”.

Important:

• Be sure to save the highlighted output from this command to notepad. You’ll need this information
to add your worker nodes and configure user administration.

• The “kubeadm join” command is run on the nodes to register themselves with the master. Keep
the secret safe since anyone with this token can add an authenticated node to your cluster. This
is used for mutual auth between the master and the nodes.

3. Configure kubernetes administration. At this point you should be logged in as root. The following will
update both root and ubuntu user accounts for kubernetes administration.

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
exit
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
cd $HOME

4. Verify kubernetes is up and running. You can monitor the services are running by using the following
command.

kubectl get pods --all-namespaces

You’ll need to run this several times until you see several containers “Running” It should look like the
following:

25

Note: corends won’t start until the network pod is up and running.

5. Install flannel

kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/
→˓Documentation/kube-flannel.yml

Note: You must install a pod network add-on so that your pods can communicate with each other.
It is necessary to do this before you try to deploy any applications to your cluster, and before
“coredns” will start up.

6. If everything installs and starts as expected you should have “coredns” and all services status “Run-
ning”. To check the status of core services, you can run the following command:

kubectl get pods --all-namespaces

The output should show all services as running.

Important: Before moving to the next lab, “Setup the Nodes” wait for all system pods to show status
“Running”.

7. Additional kubernetes status checks.

kubectl get cs

kubectl cluster-info

Hint: If you made a mistake and need to re-initialize the cluster run the following commands:

26

If you followed the instructions you should be currently connected as user
→˓**ubuntu**
When prompted for password enter "default" without the quotes
su -

This resets the master to default settings
kubeadm reset --force

This removes the admin references to the broken cluster
rm -rf /home/ubuntu/.kube /root/.kube

3.2.3 Lab 2.3 - Setup the Nodes

Once the master is setup and running, we need to join our nodes to the cluster.

Important: The following commands need to be run on the worker nodes only unless otherwise specified.

1. To join the master we need to run the command highlighted during the master initialization. You’ll
need to use the command saved to notepad in an earlier step.

Warning:

• This following is just an example!! DO not cut/paste the one below. You should have saved
this command after successfully initializing the master in the previous lab. Scroll up in your
CLI history to find the hash your kube-master1 generated to add nodes.

• This command needs to be run on node1 and node2 only!

Hint: If you missed the step to save the “kubeadm join. . . ” command from the previous lab, run the
following and use the output to join your nodes to the cluster.

kubeadm token create --print-join-command

kubeadm join 10.1.10.21:6443 --token 12rmdx.z0cbklfaoixhhdfj --discovery-token-ca-
→˓cert-hash
→˓sha256:c624989e418d92b8040a1609e493c009df5721f4392e90ac6b066c304cebe673

The output should be similar to this:

27

2. To verify the nodes have joined the cluster, run the following command on the kube-master1:

kubectl get nodes

You should see your cluster (ie master + nodes)

3. Verify all the services are started as expected (run on the kube-master1) Don’t worry about last 5
characters matching on most services, as they are randomly generated:

kubectl get pods --all-namespaces

Attention: CONGRATUATIONS! You just did the hardest part of todays lab - building a Kubernetes
cluster. While we didn’t cover each step in great detail, due to time of other labs we need to complete
today, this is one path to the overall steps to build your own cluster with a few linux boxes in your own
lab. All this content is publicly online/available at clouddocs.f5.com.

28

3.2.4 Lab 2.4 - Setup the Kubernetes UI

Important: The following commands need to be run on the master only.

Note: You have two options to install the UI:

1. Run the included script from the cloned git repo.

2. Manually run each command.

Both options are included below.

1. “git” the demo files

Note: These files should be here by default, if NOT run the following commands.

git clone https://github.com/f5devcentral/f5-agility-labs-containers.git ~/
→˓agilitydocs

cd ~/agilitydocs/kubernetes

2. Run the following commands to configure the UI

Note: A script is included in the cloned git repo from the previous step. In the interest of time you
can simply use the script.

cd /home/ubuntu/agilitydocs/kubernetes

./create-kube-dashboard

or run through the following steps:

kubectl create serviceaccount kubernetes-dashboard -n kube-system

kubectl create clusterrolebinding kubernetes-dashboard --clusterrole=cluster-
→˓admin --serviceaccount=kube-system:kubernetes-dashboard

Warning: These commands create a service account with full admin rights. In a typical deploy-
ment this would be overkill.

Create a file called kube-dashboard.yaml with the following content:

1 # ------------------- Dashboard Deployment ------------------- #
2

3 kind: Deployment
4 apiVersion: apps/v1beta2
5 metadata:
6 labels:
7 k8s-app: kubernetes-dashboard
8 name: kubernetes-dashboard

29

9 namespace: kube-system
10 spec:
11 replicas: 1
12 revisionHistoryLimit: 10
13 selector:
14 matchLabels:
15 k8s-app: kubernetes-dashboard
16 template:
17 metadata:
18 labels:
19 k8s-app: kubernetes-dashboard
20 spec:
21 containers:
22 - name: kubernetes-dashboard
23 image: k8s.gcr.io/kubernetes-dashboard-amd64:v1.10.0
24 ports:
25 - containerPort: 9090
26 protocol: TCP
27 args:
28 # Uncomment the following line to manually specify Kubernetes API

→˓server Host
29 # If not specified, Dashboard will attempt to auto discover the API

→˓server and connect
30 # to it. Uncomment only if the default does not work.
31 # - --apiserver-host=http://my-address:port
32 volumeMounts:
33 # Create on-disk volume to store exec logs
34 - mountPath: /tmp
35 name: tmp-volume
36 livenessProbe:
37 httpGet:
38 path: /
39 port: 9090
40 initialDelaySeconds: 30
41 timeoutSeconds: 30
42 volumes:
43 - name: tmp-volume
44 emptyDir: {}
45 serviceAccountName: kubernetes-dashboard
46 # Comment the following tolerations if Dashboard must not be deployed on

→˓master
47 tolerations:
48 - key: node-role.kubernetes.io/master
49 effect: NoSchedule
50

51 ---
52 # ------------------- Dashboard Service ------------------- #
53

54 kind: Service
55 apiVersion: v1
56 metadata:
57 labels:
58 k8s-app: kubernetes-dashboard
59 name: kubernetes-dashboard
60 namespace: kube-system
61 spec:
62 ports:
63 - port: 80

30

64 targetPort: 9090
65 type: NodePort
66 selector:
67 k8s-app: kubernetes-dashboard

Apply Kubernetes manifest file:

kubectl apply -f kube-dashboard.yaml

3. To access the dashboard, you need to see which port it is listening on. You can find this information
with the following command:

kubectl describe svc kubernetes-dashboard -n kube-system

Note: In our service we are assigned port “30156” (NodePort), you’ll be assigned a different port.

We can now access the dashboard by connecting to the following uri http://10.1.10.21:30156

31

http://10.1.10.21:30156

3.3 Module 3: F5 Container Connector with Kubernetes

3.3.1 Overview

The Container Connector makes L4-L7 services available to users deploying microservices-based applica-
tions in a containerized infrastructure. The CC - Kubernetes allows you to expose a Kubernetes Service
outside the cluster as a virtual server on a BIG-IP® device entirely through the Kubernetes API.

See also:

The official F5 documentation is here: F5 Container Connector - Kubernetes

3.3.2 Architecture

The Container Connector for Kubernetes comprises the f5-k8s-controller and user-defined “F5 resources”.
The f5-k8s-controller is a Docker container that can run in a Kubernetes Pod. The “F5 resources” are
Kubernetes ConfigMap resources that pass encoded data to the f5-k8s-controller. These resources tell the
f5-k8s-controller:

• What objects to configure on your BIG-IP.

• What Kubernetes Service the BIG-IP objects belong to (the frontend and backend properties in the
ConfigMap, respectively).

The f5-k8s-controller watches for the creation and modification of F5 resources in Kubernetes. When it
discovers changes, it modifies the BIG-IP accordingly. For example, for an F5 virtualServer resource, the
CC - Kubernetes does the following:

• Creates objects to represent the virtual server on the BIG-IP in the specified partition.

• Creates pool members for each node in the Kubernetes cluster, using the NodePort assigned to the
service port by Kubernetes.

• Monitors the F5 resources and linked Kubernetes resources for changes and reconfigures the BIG-IP
accordingly.

• The BIG-IP then handles traffic for the Service on the specified virtual address and load-balances to
all nodes in the cluster.

• Within the cluster, the allocated NodePort is load-balanced to all pods for the Service.

3.3.3 Prerequisites

Before being able to use the F5 Container Connector, you need to confirm the following:

• You must have a fully active/licensed BIG-IP

• A BIG-IP partition needs to be setup for the Container Connector.

• You need a user with administrative access to this partition

• Your kubernetes environment must be up and running already

Lab 3.1 - F5 Container Connector Setup

The BIG-IP Controller for Kubernetes installs as a Deployment object

See also:

32

http://clouddocs.f5.com/containers/v2/kubernetes/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

The official CC documentation is here: Install the BIG-IP Controller: Kubernetes

BIG-IP Setup

To use F5 Container connector, you’ll need a BIG-IP up and running first.

Through the Jumpbox, you should have a BIG-IP available at the following URL: https://10.1.1.245

Warning: Connect to your BIG-IP and check it is active and licensed. Its login and password are:
admin/admin

If your BIG-IP has no license or its license expired, renew the license. You just need a LTM VE license
for this lab. No specific add-ons are required (ask a lab instructor for eval licenses if your license has
expired)

1. You need to setup a partition that will be used by F5 Container Connector.

From the CLI:
tmsh create auth partition kubernetes

From the UI:
GoTo System --> Users --> Partition List
- Create a new partition called "kubernetes" (use default settings)
- Click Finished

With the new partition created, we can go back to Kubernetes to setup the F5 Container connector.

33

https://clouddocs.f5.com/containers/v2/kubernetes/kctlr-app-install.html
https://10.1.1.245

Container Connector Deployment

See also:

For a more thorough explanation of all the settings and options see F5 Container Connector - Kubernetes

Now that BIG-IP is licensed and prepped with the “kubernetes” partition, we need to define a Kubernetes
deployment and create a Kubernetes secret to hide our bigip credentials.

1. From the jumpbox open mRemoteNG and start a session with Kube-master.

Tip:

• These sessions should be running from the previous lab.

• As a reminder we’re utilizing a wrapper called MRemoteNG for Putty and other services. MRNG
hold credentials and allows for multiple protocols(i.e. SSH, RDP, etc.), makes jumping in and out
of SSH connections easier.

On your desktop select MRemoteNG, once launched you’ll see a few tabs similar to the example
below. Open up the Kubernetes / Kubernetes-Cluster folder and double click kube-master1.

2. “git” the demo files

Note: These files should be here by default, if NOT run the following commands.

git clone https://github.com/f5devcentral/f5-agility-labs-containers.git ~/
→˓agilitydocs

cd ~/agilitydocs/kubernetes

34

https://clouddocs.f5.com/containers/v2/kubernetes/
https://kubernetes.io/docs/user-guide/deployments/
https://kubernetes.io/docs/user-guide/deployments/
https://kubernetes.io/docs/user-guide/secrets/

3. Create bigip login secret

kubectl create secret generic bigip-login -n kube-system --from-
→˓literal=username=admin --from-literal=password=admin

You should see something similar to this:

4. Create kubernetes service account for bigip controller

kubectl create serviceaccount k8s-bigip-ctlr -n kube-system

You should see something similar to this:

5. Create cluster role for bigip service account (admin rights, but can be modified for your environment)

kubectl create clusterrolebinding k8s-bigip-ctlr-clusteradmin --
→˓clusterrole=cluster-admin --serviceaccount=kube-system:k8s-bigip-ctlr

You should see something similar to this:

6. At this point we have two deployment mode options, Nodeport or Cluster. For more information see
BIG-IP Controller Modes

Important: This lab will focus on Nodeport. In Class 4 Openshift we’ll use ClusterIP.

7. Nodeport mode f5-nodeport-deployment.yaml

Note:

• For your convenience the file can be found in /home/ubuntu/agilitydocs/kubernetes (downloaded
earlier in the clone git repo step).

• Or you can cut and paste the file below and create your own file.

• If you have issues with your yaml and syntax (indentation MATTERS), you can try to use an
online parser to help you : Yaml parser

1 apiVersion: extensions/v1beta1
2 kind: Deployment
3 metadata:
4 name: k8s-bigip-ctlr-deployment
5 namespace: kube-system
6 spec:
7 replicas: 1
8 template:
9 metadata:

10 name: k8s-bigip-ctlr

35

http://clouddocs.f5.com/containers/v2/kubernetes/kctlr-modes.html
http://codebeautify.org/yaml-validator

11 labels:
12 app: k8s-bigip-ctlr
13 spec:
14 serviceAccountName: k8s-bigip-ctlr
15 containers:
16 - name: k8s-bigip-ctlr
17 image: "f5networks/k8s-bigip-ctlr:latest"
18 imagePullPolicy: IfNotPresent
19 env:
20 - name: BIGIP_USERNAME
21 valueFrom:
22 secretKeyRef:
23 name: bigip-login
24 key: username
25 - name: BIGIP_PASSWORD
26 valueFrom:
27 secretKeyRef:
28 name: bigip-login
29 key: password
30 command: ["/app/bin/k8s-bigip-ctlr"]
31 args: [
32 "--bigip-username=$(BIGIP_USERNAME)",
33 "--bigip-password=$(BIGIP_PASSWORD)",
34 "--bigip-url=10.1.10.60",
35 "--bigip-partition=kubernetes",
36 "--namespace=default",
37 "--pool-member-type=nodeport"
38]

8. Once you have your yaml file setup, you can try to launch your deployment. It will start our f5-k8s-
controller container on one of our nodes (may take around 30sec to be in a running state):

kubectl create -f f5-nodeport-deployment.yaml

9. Verify the deployment “deployed”

kubectl get deployment k8s-bigip-ctlr-deployment --namespace kube-system

10. To locate on which node the container connector is running, you can use the following command:

kubectl get pods -o wide -n kube-system

We can see that our container is running on kube-node2 below.

36

Troubleshooting

If you need to troubleshoot your container, you have two different ways to check the logs of your container,
kubectl command or docker command.

1. Using kubectl command: you need to use the full name of your pod as showed in the previous image

For example:
kubectl logs k8s-bigip-ctlr-deployment-5b74dd769-x55vx -n kube-system

2. Using docker logs command: From the previous check we know the container is running on kube-
node1. Via mRemoteNG open a session to kube-node1 and run the following commands:

sudo docker ps

Here we can see our container ID is “01a7517b50c5”

Now we can check our container logs:

sudo docker logs 01a7517b50c5

Note: The log messages here are identical to the log messages displayed in the previous kubectl
logs command.

37

3. You can connect to your container with kubectl as well:

kubectl exec -it k8s-bigip-ctlr-deployment-79fcf97bcc-48qs7 -n kube-system -- /
→˓bin/sh

cd /app

ls -la

exit

Lab 3.2 - F5 Container Connector Usage

Now that our container connector is up and running, let’s deploy an application and leverage our F5 CC.

For this lab we’ll use a simple pre-configured docker image called “f5-hello-world”. It can be found on docker
hub at f5devcentral/f5-hello-world

To deploy our application, we will need to do the following:

1. Define a Deployment: this will launch our application running in a container.

2. Define a ConfigMap: this can be used to store fine-grained information like individual properties or
coarse-grained information like entire config files or JSON blobs. It will contain the BIG-IP configura-
tion we need to push.

3. Define a Service: this is an abstraction which defines a logical set of pods and a policy by which
to access them. Expose the service on a port on each node of the cluster (the same port on each
node). You’ll be able to contact the service on any <NodeIP>:NodePort address. If you set the type
field to “NodePort”, the Kubernetes master will allocate a port from a flag-configured range (default:
30000-32767), and each Node will proxy that port (the same port number on every Node) into your
Service.

App Deployment

On kube-master1 we will create all the required files:

1. Create a file called f5-hello-world-deployment.yaml

Tip: Use the file in /home/ubuntu/agilitydocs/kubernetes

1 apiVersion: extensions/v1beta1
2 kind: Deployment
3 metadata:
4 name: f5-hello-world
5 spec:
6 replicas: 2
7 template:
8 metadata:
9 labels:

10 run: f5-hello-world
11 spec:
12 containers:
13 - name: f5-hello-world
14 image: "f5devcentral/f5-hello-world:latest"

38

https://hub.docker.com/r/f5devcentral/f5-hello-world/

15 imagePullPolicy: IfNotPresent
16 ports:
17 - containerPort: 8080
18 protocol: TCP

2. Create a file called f5-hello-world-configmap.yaml

Tip: Use the file in /home/ubuntu/agilitydocs/kubernetes

Attention: The schema version below (for example 1.7) comes from the releases of big-
ip-controller. For more information, head over to the following link for a quick review: https:
//clouddocs.f5.com/containers/v2/releases_and_versioning.html#schema-table

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: f5-hello-world
5 namespace: default
6 labels:
7 f5type: virtual-server
8 data:
9 schema: "f5schemadb://bigip-virtual-server_v0.1.7.json"

10 data: |
11 {
12 "virtualServer": {
13 "frontend": {
14 "balance": "round-robin",
15 "mode": "http",
16 "partition": "kubernetes",
17 "virtualAddress": {
18 "bindAddr": "10.1.10.81",
19 "port": 80
20 }
21 },
22 "backend": {
23 "serviceName": "f5-hello-world",
24 "servicePort": 8080,
25 "healthMonitors": [{
26 "interval": 5,
27 "protocol": "http",
28 "send": "HEAD / HTTP/1.0\r\n\r\n",
29 "timeout": 16
30 }]
31 }
32 }
33 }

3. Create a file called f5-hello-world-service.yaml

Tip: Use the file in /home/ubuntu/agilitydocs/kubernetes

39

https://clouddocs.f5.com/containers/v2/releases_and_versioning.html#schema-table
https://clouddocs.f5.com/containers/v2/releases_and_versioning.html#schema-table

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: f5-hello-world
5 labels:
6 run: f5-hello-world
7 spec:
8 ports:
9 - port: 8080

10 protocol: TCP
11 targetPort: 8080
12 type: NodePort
13 selector:
14 run: f5-hello-world

4. We can now launch our application:

kubectl create -f f5-hello-world-deployment.yaml
kubectl create -f f5-hello-world-configmap.yaml
kubectl create -f f5-hello-world-service.yaml

5. To check the status of our deployment, you can run the following commands:

kubectl get pods -o wide

This can take a few seconds to a minute to create these hello-world containers
→˓to running state.

kubectl describe svc f5-hello-world

6. To test the app you need to pay attention to:

40

The NodePort value, that’s the port used by Kubernetes to give you access to the app from the
outside. Here it’s “30507”, highlighted above.

The Endpoints, that’s our 2 instances (defined as replicas in our deployment file) and the port as-
signed to the service: port 8080.

Now that we have deployed our application sucessfully, we can check our BIG-IP configuration. From
the browser open https://10.1.1.245

Warning: Don’t forget to select the “kubernetes” partition or you’ll see nothing.

Here you can see a new Virtual Server, “default_f5-hello-world” was created, listening on 10.1.10.81.

Check the Pools to see a new pool and the associated pool members: Local Traffic –> Pools –>
“cfgmap_default_f5-hello-world_f5-hello-world” –> Members

41

https://10.1.1.245

Note: You can see that the pool members listed are all the kubernetes nodes. (NodePort mode)

7. Now you can try to access your application via your BIG-IP VIP: 10.1.10.81

8. Hit Refresh many times and go back to your BIG-IP UI, go to Local Traffic –> Pools –> Pool list –>
cfgmap_default_f5-hello-world_f5-hello-world –> Statistics to see that traffic is distributed as expected.

9. How is traffic forwarded in Kubernetes from the <node IP>:30507 to the <container IP>:8080? This is
done via iptables that is managed via the kube-proxy instances. On either of the nodes, SSH in and
run the following command:

sudo iptables-save | grep f5-hello-world

This will list the different iptables rules that were created regarding our service.

42

10. Scale the f5-hello-world app

kubectl scale --replicas=10 deployment/f5-hello-world -n default

11. Check that the pods were created

kubectl get pods

12. Check the pool was updated on big-ip

43

Attention: Why are there only 2 pool members?

Expected time to complete: 1 hours

3.4 Lab Setup

We will leverage the following setup to configure the Kubernetes environment.

Hostname IP-ADDR Credentials
jumpbox 10.1.1.250 user/Student!Agility!
bigip1 10.1.1.245

10.1.10.60
admin/admin
root/default

kube-master1 10.1.10.21 ubuntu/ubuntu
root/default

kube-node1 10.1.10.22 ubuntu/ubuntu
root/default

kube-node2 10.1.10.23 ubuntu/ubuntu
root/default

44

4
Class 3: Introduction to Mesos / Marathon

This introductory class covers the following topics:

4.1 Module 1: Introduction to Mesos / Marathon

The purpose of this module is to give you a basic understanding of Mesos / Marathon concepts and com-
ponents

4.1.1 Mesos / Marathon Overview

The F5 Marathon Container Integration consists of the F5 Marathon BIG-IP Controller.

The F5 Marathon BIG-IP Controller configures a BIG-IP to expose applications in a Mesos cluster as BIG-IP
virtual servers, serving North-South traffic.

See also:

The official F5 documentation is available here: F5 Marathon Container Integration

You can either setup the whole F5 solutions yourself or use some scripts to automatically deploy everything.

We also provide some ansible playbooks if you need to setup a Mesos/Marathon env.

Before working on the installation itself, you need to understand the different components involved in this
setup:

• Master / Agent functions

• The different components involved in the Master / Agent architecture

• How High availability is achieved

• Marathon overview

Mesos Architecture

This is an extract from Mesos Architecture

45

http://clouddocs.f5.com/containers/v2/marathon/
http://mesos.apache.org/documentation/latest/architecture/

Some of the involved components:

• Master: aggregates resource offers from all agent nodes and provides them to registered frameworks.

• Agent: runs a discrete Mesos task on behalf of a framework. It is an agent instance registered with
the Mesos master. The synonym of agent node is worker or slave node. You can have private or
public agent nodes. Agent daemon can run on the same component than the master daemon. This
is useful when you need a small environment for testing

• Framework: “Applications” running on Mesos. It is composed of a scheduler, which registers with
the master to receive resource offers, and one or more executors, which launches tasks on slaves.
Examples of Mesos frameworks include Marathon, Chronos and Hadoop

• Offer: a list of a agent’s available CPU and memory resources. All agents send offers to the master,
and the master provides offers to registered frameworks

• Executors: launched on agent nodes to run tasks for a service.

• Task: a unit of work that is scheduled by a framework, and is executed on an agent node. A task can
be anything from a bash command or script, to an SQL query, to a Hadoop job, a docker image

• Apache ZooKeeper: software that is used to coordinate the master nodes and achieve High availability

• Service discovery: When your app is up and running, you need a way to send traffic to it, from other
applications on the same cluster, and from external clients.

Example of resource offer

This is an extract from Apache Mesos website Mesos Architecture

46

http://mesos.apache.org/documentation/latest/architecture/

Let’s walk through the events in the figure.

1. Agent 1 reports to the master that it has 4 CPUs and 4 GB of memory free. The master then invokes
the allocation policy module, which tells it that framework 1 should be offered all available resources.

2. The master sends a resource offer describing what is available on agent 1 to framework 1.

3. The framework’s scheduler replies to the master with information about two tasks to run on the agent,
using <2 CPUs, 1 GB RAM> for the first task, and <1 CPUs, 2 GB RAM> for the second task.

4. Finally, the master sends the tasks to the agent, which allocates appropriate resources to the frame-
work’s executor, which in turn launches the two tasks (depicted with dotted-line borders in the figure).
Because 1 CPU and 1 GB of RAM are still unallocated, the allocation module may now offer them to
framework 2.

In addition, this resource offer process repeats when tasks finish and new resources become free.

Service Discovery

One way to enable service discovery is to leverage Mesos DNS. Mesos DNS provides service discovery
through domain name system (DNS).

Mesos-DNS periodically queries the Mesos master(s), retrieves the state of all running tasks from all running
frameworks, and generates DNS records for these tasks (A and SRV records). As tasks start, finish, fail, or
restart on the Mesos cluster, Mesos-DNS updates the DNS records to reflect the latest state.

Running tasks can be discovered by looking up A and, optionally, SRV records within the Mesos domain.

• An A record associates a hostname to an IP address

47

• An SRV record associates a service name to a hostname and an IP port

High Availability

Marathon supports high availability be leveraging Zookeeper. High availability allows applications to keep
running if an instance becomes unavailable. This is accomplished by running several Marathon instances
that point to the same ZooKeeper quorum. ZooKeeper is used to perform leader election in the event that
the currently leading Marathon instance fails.

If you want to learn more about Zookeeper, refer to their website Zookeeper

With Zookeeper, it is recommended to have an odd number of servers.

Marathon

Marathon is a production-proven Apache Mesos framework for container orchestration. the github project
can be found here: Github Marathon , documentation is here

Marathon is a framework for Mesos that is designed to launch long-running applications, and, in Meso-
sphere, serves as a replacement for a traditional init system. It has many features that simplify running
applications in a clustered environment, such as high-availability, application health checks, . . . It adds its
scaling and self-healing capabilities to the Mesosphere feature set.

Marathon can be used to start other Mesos frameworks, and it can also launch any process that can be
started in the regular shell. As it is designed fo long-running applications, it will ensure that applications it
has launched will continue running, even if the slave node(s) they are running on fails.

Main features

1. High Availability. Marathon runs as an active/passive cluster with leader election for 100% uptime.

2. Multiple container runtimes. Marathon has first-class support for both Mesos containers (using
cgroups) and Docker.

3. Stateful apps. Marathon can bind persistent storage volumes to your application. You can run
databases like MySQL and Postgres, and have storage accounted for by Mesos.

4. UI.

5. Constraints. e.g. Only one instance of an application per rack, node, etc.

6. Service Discovery & Load Balancing. Several methods available.

7. Health Checks. Evaluate your application’s health using HTTP or TCP checks.

8. Event Subscription. Supply an HTTP endpoint to receive notifications - for example to integrate with
an external load balancer.

9. Metrics. Query them at /metrics in JSON format or push them to systems like graphite, statsd and
Datadog.

10. Complete REST API for easy integration and script-ability.

48

http://zookeeper.apache.org/
https://github.com/mesosphere/marathon
http://mesosphere.github.io/marathon/

4.2 Module 2: Build a Mesos / Marathon Cluster

Attention: THIS MODULE CAN BE SKIPPED. THE BLUEPRINT IS PRE-CONFIGURED WITH A
WORKING CLUSTER. THIS MODULE IS FOR DOCUMENTION PURPOSES ONLY.

In this module, we will build a 3 node cluster (1x masters and 2x nodes) utilizing Ubuntu server images.

As a reminder, in this module, our cluster setup is:

Hostname IP-ADDR Role
mesos-master1 10.2.10.21 Master
mesos-agent1 10.2.10.22 Agent
mesos-agent2 10.2.10.23 Agent

4.2.1 Lab 2.1 - Prep Ubuntu

Note: This installation will utilize Ubuntu v16.04 (Xenial)

Important: The following commands need to be run on all three nodes unless otherwise specified.

1. From the jumpbox open mRemoteNG and start a session to each of the following servers. The
sessions are pre-configured to connect with the default user “ubuntu”.

• mesos-master1

• mesos-agent2

• mesos-agent3

2. Elevate to “root”

su -

#When prompted for password enter "default" without the quotes

3. For your convenience we’ve already added the host IP & names to /etc/hosts. Verify the file

cat /etc/hosts

The file should look like this:

49

If entries are not there add them to the bottom of the file be editing “/etc/hosts” with ‘vim’

vim /etc/hosts

#cut and paste the following lines to /etc/hosts

10.2.10.21 mesos-master1
10.2.10.22 mesos-agent1
10.2.10.23 mesos-agent2

4. Ensure the OS is up to date, run the following command

apt update && apt upgrade -y

#This can take a few seconds to several minute depending on demand to download
→˓the latest updates for the OS.

5. Add the docker repo

curl \-fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add \-

add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
→˓$(lsb_release -cs) stable"

6. Install the docker packages

apt update && apt install docker-ce -y

7. Verify docker is up and running

docker run --rm hello-world

If everything is working properly you should see the following message

50

8. Install java for the mesos and marathon processes.

apt install -y openjdk-8-jdk

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

4.2.2 Lab 2.2 - Setup the Master

Important: The following commands need to be run on the master only unless otherwise specified.

Install Mesos, Marathon and Zookeeper

1. Add the mesos/marathon repo

Run the following commands:

apt-key adv --keyserver keyserver.ubuntu.com --recv E56151BF

cat <<EOF >> /etc/apt/sources.list.d/mesosphere.list
deb http://repos.mesosphere.com/ubuntu $(lsb_release -cs) main
EOF

2. Install the mesos, marathon and zookeeper packages

apt update && apt install mesos marathon zookeeperd -y

Setup Zookeeper

Note: 2181 is zookeeper’s default port.

1. Setup a unique ID per zookeeper instance. Update /etc/zookeeper/conf/myid to 1, 2 or 3
depending on the number of master nodes. In our case 1

51

echo 1 > /etc/zookeeper/conf/myid

2. Modify the zookeeper config file on each master

sed -i /^#server.1/s/#server.1=zookeeper1/server.1=10.2.10.21/ /etc/zookeeper/
→˓conf/zoo.cfg

Setup Mesos

1. Create mesos ip file /etc/mesos-master/ip

echo "10.2.10.21" > /etc/mesos-master/ip

2. Create mesos hostname file /etc/mesos-master/hostname (specify the IP address of your node)

echo "10.2.10.21" > /etc/mesos-master/hostname

3. Change the quorum value to reflect our cluster size. It should be set over 50% of the number of master
instances. In this case it should be 1 because we have only one master

echo 1 > /etc/mesos-master/quorum

4. Point zookeeper to the master instance. This is done in the file /etc/mesos/zk

echo "zk://10.2.10.21:2181/mesos" > /etc/mesos/zk

Setup Marathon

1. First we need to specify the zookeeper masters that marathon will connect to (for information and
things like scheduling). We can copy the previous file we setup for mesos:

echo "MARATHON_MASTER=`cat /etc/mesos/zk`" > /etc/default/marathon

2. We also need to have marathon store its own state in zookeper (since it runs on all three masters):

echo "MARATHON_ZK=zk://10.2.10.21:2181/marathon" >> /etc/default/marathon

Start your services

1. When you install mesos, the master and slave services are enabled (called mesos-master and mesos-
slave). Here, we want our master to focus on this tasks so we need to disable the slave service. Do
this on all the master nodes:

systemctl stop mesos-slave
echo manual > /etc/init/mesos-slave.override

2. We need to restart zookeeper and start mesos-master and marathon process on all master nodes:

systemctl restart zookeeper

systemctl start mesos-master
systemctl enable mesos-master

52

systemctl start marathon

3. We can validate that it works by connecting to mesos and marathon via a browser. Mesos runs on
port 5050 (http) and marathon runs on port 8080 (http).

Mesos:

Marathon:

4. If you want to check whether the service started as expected, you can use the following commands:

systemctl status mesos-master

systemctl status marathon

You should see something like the following:

Mesos:

53

Marathon:

5. For more information about the marathon service, check the about section in marathon by clicking the
? drop down in the upper right hand side of the marathon page.

6. If multiple masters were configured for high availability you can do the following to test the HA of
marathon:

54

Attention: For our lab we have only one master so this step is for documentation purposes.

• Figure out which mesos is running the framework marathon (based on our screenshot above, it
is available on master1)

• Restart this master and you should see the framework was restarted automatically on another
host. “mesos-master1” would change to “mesos-master2, 3, etc.”

4.2.3 Lab 2.3 - Setup the Agents

Once the master is setup and running, we need to setup and join our agents to the cluster.

Important: The following commands need to be run on both agent nodes unless otherwise specified.

Install Mesos

1. Add the mesos/marathon repo

Run the following commands:

apt-key adv --keyserver keyserver.ubuntu.com --recv E56151BF

cat <<EOF >> /etc/apt/sources.list.d/mesosphere.list
deb http://repos.mesosphere.com/ubuntu $(lsb_release -cs) main
EOF

2. Install the mesos packages

apt update && apt-get install mesos -y

Setup Mesos

1. Create mesos ip file /etc/mesos-slave/ip

2. Create mesos hostname file /etc/mesos-slave/hostname (specify the IP address of your node)

3. Point zookeeper to the master instance. This is done in the file /etc/mesos/zk

55

On agent1
echo "10.2.10.22" > /etc/mesos-slave/ip
echo "10.2.10.22" > /etc/mesos-slave/hostname
echo "zk://10.2.10.21:2181/mesos" > /etc/mesos/zk

On agent2
echo "10.2.10.23" > /etc/mesos-slave/ip
echo "10.2.10.23" > /etc/mesos-slave/hostname
echo "zk://10.2.10.21:2181/mesos" > /etc/mesos/zk

4. Make the following changes to allow “docker” containers with mesos.

#Add the ability to use docker containers
echo 'docker,mesos' > /etc/mesos-slave/containerizers

#Increase the timeout to 5 min so that we have enough time to download any needed
→˓docker image
echo '5mins' > /etc/mesos-slave/executor_registration_timeout

#Allow users other then "marathon" to create and run jobs on the agents
echo 'false' > /etc/mesos-slave/switch_user

Start Services

1. First we need to make sure that zookeeper and mesos-master don’t run on the agents.

systemctl stop zookeeper
echo manual > /etc/init/zookeeper.override

systemctl stop mesos-master
echo manual > /etc/init/mesos.master.override

2. Start & enable the agent process called mesos-slave

systemctl start mesos-slave
systemctl enable mesos-slave

3. Check on master with mesos interface (port 5050) if your agents registered successfully. You should
see both agent1 and agent2 on the agent page.

56

Test Your Setup

Connect to Marathon through one of the master (8080) and launch an application.

1. Click on create application

2. Make the following settings and click “Create Application”

• ID: test

• CPU: 0.1

• Memory: 32M

• Command: echo TEST; sleep 5

3. Once it starts, connect to the mesos framework. Here you should see more and more completed
tasks. Name of the task should be “test” (our ID).

57

4. If you let it run for a while, you’ll see more and more “Completed Tasks”. You can see that the Host
being selected to run those tasks is not always the same.

5. Go Back to Marathon, click on our application test and click on the setting button and select destroy
to remove it.

58

Launch A Container

To test our containers from marathon. We will start a simple apache container.

1. Click on create an application, switch to JSON mode and replace the default 8 lines of json with the
following and Click “Create Application”

Note: This may takes some time since we will have to retrieve the image first

{
"id": "my-website",
"cpus": 0.5,
"mem": 32.0,
"container": {

"type": "DOCKER",
"docker": {

"image": "eboraas/apache-php",
"network": "BRIDGE",
"portMappings": [

{ "containerPort": 80, "hostPort": 0 }
]

}
}

}

59

2. It may take some time to switch from Deploying to Running.

3. Once it’s in a Running state, find the port used by the container and try to access it at agent IP:port.
Click on your application “my-website”. Here you’ll see the port associated to your instance. In this
case it’s 31870 and on agent1 - 10.2.10.22

60

4. Use your browser to connect to the application:

4.2.4 Lab 2.4 - Setup Mesos-DNS

If you want to be able to do service discovery with Mesos/Marathon, you need to install and setup mesos-
dns.

To leverage marathon for scalability and HA, we will launch mesos-dns as an application from Marathon.

We will setup mesos-dns on mesos-agent1 (we will force mesos-dns to start on mesos-agent1 in Marathon
- 10.2.10.22).

We need to do the following tasks:

• Download the latest mesos-dns binaries

• Configure mesos-dns

• Launch the mesos-dns binary from Marathon

See also:

To retrieve the binary, go to Mesos DNS releases and select the latest version. For this class we’ll use the
following binary: Mesos DNS release v0.6.0

61

https://github.com/mesosphere/mesos-dns/releases
https://github.com/mesosphere/mesos-dns/releases/download/v0.6.0/mesos-dns-v0.6.0-linux-amd64

Download & Configure Mesos-DNS

1. SSH to mesos-agent1 and do the following:

curl -O -L https://github.com/mesosphere/mesos-dns/releases/download/v0.6.0/mesos-
→˓dns-v0.6.0-linux-amd64

mkdir /etc/mesos-dns

2. Create a file in /etc/mesos-dns/ called config.json and add the json block

vim /etc/mesos-dns/config.json

{
"zk": "zk://10.2.10.21:2181/mesos",
"masters": ["10.2.10.21:5050"],
"refreshSeconds": 60,
"ttl": 60,
"domain": "mesos",
"port": 53,
"resolvers": ["8.8.8.8"],
"timeout": 5,
"httpon": true,
"dnson": true,
"httpport": 8123,
"externalon": true,
"SOAMname": "ns1.mesos",
"SOARname": "root.ns1.mesos",
"SOARefresh": 60,
"SOARetry": 600,
"SOAExpire": 86400,
"SOAMinttl": 60,
"IPSources": ["mesos", "host"]

}

3. Now setup the binary in a proper location:

mkdir /usr/local/mesos-dns

mv ./mesos-dns-v0.6.0-linux-amd64 /usr/local/mesos-dns/

chmod +x /usr/local/mesos-dns/mesos-dns-v0.6.0-linux-amd64

4. To test your setup do the following:

/usr/local/mesos-dns/mesos-dns-v0.6.0-linux-amd64 -config /etc/mesos-dns/config.
→˓json -v 10

5. This will start your mesos-dns app and you can test it.

62

6. You can now test your dns setup. Open a new command prompt from the windows jumpbox and start
nslookup

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\user>nslookup
Default Server: b.resolvers.Level3.net
Address: 4.2.2.2

> server 10.2.10.22
Default Server: [10.2.10.22]
Address: 10.2.10.22

> www.google.com
Server: [10.2.10.22]
Address: 10.2.10.22

Non-authoritative answer:
Name: www.google.com
Addresses: 2607:f8b0:4007:80e::2004

172.217.14.100

> master.mesos
Server: [10.2.10.22]
Address: 10.2.10.22

Name: master.mesos
Address: 10.2.10.21

>

7. Stop your test mesos-dns app by typing “CTRL-c”

63

Warning: The next steps will fail if you don’t stop your test mesos-dns app

Launch Mesos-DNS In Marathon

1. Launch the mesos-dns image in marathon. Connect to marathon, click on Create Application and
enable JSON Mode. Copy the following JSON block over the default and click Create Application.

{
"cmd": "/usr/local/mesos-dns/mesos-dns-v0.6.0-linux-amd64 -config=/etc/mesos-

→˓dns/config.json -v=10",
"cpus": 0.2,
"mem": 256,
"id": "mesos-dns",
"instances": 1,
"constraints": [["hostname", "CLUSTER", "10.2.10.22"]]

}

2. Update /etc/resolv.conf on all agents by adding our mesos-dns nameserver to our /etc/resolv.conf
file. SSH to mesos-agent1 & 2.

sed -i /nameserver/s/.*/"nameserver 10.2.10.22"/ /etc/resolv.conf

Note: If you have deployed your instances in a cloud like AWS, it is likely that you’ll lose your DNS setup
after a reboot. If you want to make your changes persist, you need to update /etc/dhcp/dhclient.conf to
supersede the dhcp setup. More information here: Static DNS server in a EC2 instance

Test Mesos-DNS

To test our Mesos DNS setup, we will start a new application and check if it automatically gets a DNS name.

1. Start a new app in marathon:

{
"id": "app-test-dns",
"cpus": 0.5,
"mem": 32.0,
"container": {

"type": "DOCKER",
"docker": {

"image": "eboraas/apache-php",
"network": "BRIDGE",
"portMappings": [

{ "containerPort": 80, "hostPort": 0 }
]

}
}

}

2. Once it’s running, go to one of your slaves and run ping app-test-dns.marathon.mesos. It should work
and return the agent IP.

64

https://aws.amazon.com/premiumsupport/knowledge-center/ec2-static-dns-ubuntu-debian/

3. If you don’t try to ping from mesos-agent1 or mesos-agent2, make sure your client can reach mesos-
dns server first (10.2.10.22)

4.3 Module 3: F5 Container Connector with Mesos / Marathon

4.3.1 Overview

F5 Container connector in Mesos / Marathon is called: F5 Marathon BIG-IP Controller.

The F5 Marathon BIG-IP Controller is a container-based Marathon Application – marathon-bigip-ctlr. You
can launch the F5 Marathon BIG-IP Controller in Marathon via the Marathon REST API or the Marathon
Web Interface.

The marathon-bigip-ctlr watches the Marathon API for special “F5 Application Labels” that tell it:

• What Application we want it to manage

• How we want to configure the BIG-IP for that specific Application.

You can manage BIG-IP objects directly, or deploy iApps, with the F5 Marathon BIG-IP Controller.

See also:

The official F5 documentation is here: F5 Container Connector - Marathon

65

https://clouddocs.f5.com/containers/v2/marathon/

4.3.2 Architecture

In Marathon, you can associate labels with Application tasks for tracking/reporting purposes. F5 has devel-
oped a set of custom “F5 Application Labels” as a way notify the F5 Marathon BIG-IP Controller that they
have work to do.

When the F5 Marathon BIG-IP Controller discovers Applications with new or updated F5 Application Labels,
it dynamically creates iApps or virtual servers, pools, pool members, and HTTP health monitors for each of
the Application’s tasks.

See also:

If you want to have more details about the F5 Application Labels, you may go to the F5 official documentation
here: F5 BIG-IP Controller for Marathon

4.3.3 Prerequisites

Before being able to use the Container Connecter, you need to handle some prerequisites

• You must have a fully active/licensed BIG-IP

• A BIG-IP partition needs to be setup for the Container connector. You need to have access to a user
with the right privileges

• You need a user with administrative access to this partition

• Your Mesos / Marathon environment must be up and running already

Lab 3.1 - F5 Container Connector Setup

The BIG-IP Controller for Marathon installs as an Application

See also:

66

http://clouddocs.f5.com/products/connectors/marathon-bigip-ctlr/v1.1/
https://mesosphere.github.io/marathon/docs/application-basics.html

The official CC documentation is here: Install the BIG-IP Controller: Marathon

BIG-IP Setup

To use F5 Container connector, you’ll need a BIG-IP up and running first.

Through the Jumpbox, you should have a BIG-IP available at the following URL: https://10.1.1.245

Warning: Connect to your BIG-IP and check it is active and licensed. Its login and password are:
admin/admin

If your BIG-IP has no license or its license expired, renew the license. You just need a LTM VE license
for this lab. No specific add-ons are required (ask a lab instructor for eval licenses if your license has
expired)

1. You need to setup a partition that will be used by F5 Container Connector.

From the CLI:
tmsh create auth partition mesos

From the UI:
GoTo System --> Users --> Partition List
- Create a new partition called "mesos" (use default settings)
- Click Finished

With the new partition created, we can go back to Marathon to setup the F5 Container connector.

67

http://clouddocs.f5.com/containers/v2/marathon/mctlr-app-install.html
https://10.1.1.245

Container Connector Deployment

See also:

For a more thorough explanation of all the settings and options see F5 Container Connector - Marathon

Now that BIG-IP is licensed and prepped with the “mesos” partition, we need to deploy our Marathon BIG-IP
Controller, we can either use Marathon UI or use the Marathon REST API. For this class we will be using
the Marathon UI.

1. From the jumpbox connect to the Marathon UI at http://10.2.10.21:8080 and click “Create Application”.

2. Click on “JSON mode” in the top-right corner

3. REPLACE the 8 lines of default JSON code shown with the following JSON code and click Create
Application

1 {
2 "id": "f5/marathon-bigip-ctlr",
3 "cpus": 0.5,
4 "mem": 64.0,
5 "instances": 1,
6 "container": {
7 "type": "DOCKER",
8 "docker": {
9 "image": "f5networks/marathon-bigip-ctlr:latest",

10 "network": "BRIDGE"
11 }
12 },
13 "env": {
14 "MARATHON_URL": "http://10.2.10.21:8080",
15 "F5_CC_PARTITIONS": "mesos",
16 "F5_CC_BIGIP_HOSTNAME": "10.2.10.60",
17 "F5_CC_BIGIP_USERNAME": "admin",
18 "F5_CC_BIGIP_PASSWORD": "admin"
19 }
20 }

68

https://clouddocs.f5.com/containers/v2/marathon/
http://10.2.10.21:8080

4. After a few seconds you should have a new folder labeled “f5” as shown in this picture.

5. Click on the “f5” folder and you should have “Running”, the BIG-IP North/South Controller labeled
marathon-bigip-ctrl.

Note: If you’re running the lab outside of Agility, you need may need to update the field image with
the appropriate path to your image:

69

• Load it on all your agents/nodes with the docker pull command. sudo docker pull
f5networks/marathon-bigip-ctlr:latest for the latest version.

• Load it on a system and push it into your registry if needed.

• If your Mesos environment use authentication, here is a link explaining how to handle authenti-
cation with the Marathon BIG-IP Controller: Set up authentication to your secure DC/OS cluster

Troubleshooting

If you need to troubleshoot your container, you have two different ways to check the logs of your container,
Marathon UI or Docker command.

1. Using the Marathon UI Click on Applications –> the f5 folder –> marathon-bigip-ctlr. From here you
can download and view the logs from the text editor of choice.

You should see something like this:

2. Using docker log command: You need to identify where the Controller is running. From the previous
step we can see it’s running on 10.2.10.22 (which is mesos-agent1).

Connect via SSH to mesos-agent1 and run the following commands:

70

http://clouddocs.f5.com/containers/v1/marathon/mctlr-authenticate-dcos.html#mesos-authentication

sudo docker ps

This command will give us the Controllers Container ID, here it is: 4fdee0a49dcb. We need this ID for
the next command.

To check the logs of our Controller:

sudo docker logs 4fdee0a49dcb

3. You can connect to your container with docker as well:

sudo docker exec -it 4fdee0a49dcb /bin/sh

cd /app

ls -la

exit

Lab 3.2 - F5 Container Connector Usage

Now that our container connector is up and running, let’s deploy an application and leverage our F5 CC.

For this lab we’ll use a simple pre-configured docker image called “f5-hello-world”. It can be found on docker
hub at f5devcentral/f5-hello-world

App Deployment

From the jumpbox connect to the Marathon UI at http://10.2.10.21:8080 and click “Create Application”.

1. Click on “JSON mode” in the top-right corner

71

https://hub.docker.com/r/f5devcentral/f5-hello-world/
http://10.2.10.21:8080

2. REPLACE the 8 lines of default JSON code shown with the following JSON code and click Create
Application

1 {
2 "id": "f5-hello-world",
3 "cpus": 0.1,
4 "mem": 128.0,
5 "instances": 2,
6 "container": {
7 "type": "DOCKER",
8 "docker": {
9 "image": "f5devcentral/f5-hello-world:latest",

10 "network": "BRIDGE",
11 "forcePullImage": false,
12 "portMappings": [
13 { "containerPort": 8080, "hostPort": 0, "protocol": "tcp" }
14]
15 }
16 },
17 "labels": {
18 "F5_PARTITION": "mesos",
19 "F5_0_BIND_ADDR": "10.2.10.81",
20 "F5_0_MODE": "http",
21 "F5_0_BALANCE": "round-robin",
22 "F5_0_PORT": "80"
23 },
24 "healthChecks": [
25 {
26 "protocol": "HTTP",
27 "portIndex": 0,
28 "path": "/",
29 "gracePeriodSeconds": 5,
30 "intervalSeconds": 16,
31 "maxConsecutiveFailures": 3
32 }
33]
34 }

3. F5-Hello-World is “Deploying”

Note: The JSON app definition specified several things:

(a) What container image to use (line 9)

(b) The BIG-IP configuration (Partition, VS IP, VS Port).

(c) The Marathon health check for this app. The BIG-IP will replicate those health checks.

(d) The number of instances (line 5)

72

Wait for your application to be successfully deployed and be in a running state.

4. Click on “f5-hello-world”. Here you will see two instance deployed, with their node IP and Port.

5. Click on one of the <IP:Port> assigned to be redirect there:

73

6. We can check whether the Marathon BIG-IP Controller has updated our BIG-IP configuration accord-
ingly. Connect to your BIG-IP on https://10.1.1.245 and go to Local Traffic –> Virtual Server.

Warning: Don’t forget to select the “mesos” partition or you’ll see nothing.

You should have something like this:

7. Go to Local Traffic –> Pool –> “f5-hello-world_80” –> Members. Here we can see that two pool
members are defined and the IP:Port match ou deployed app in Marathon.

74

https://10.1.1.245

8. You should be able to access the application. In your browser try to connect to http://10.2.10.81

9. Scale the f5-hello-world app. Go back to the Marathon UI (http://10.2.10.21:8080). Go to Applications
–> “f5-hello-world” and click “Scale Application”.

Let’s increase the number from 2 to 10 instances and click on “Scale Application”.

75

http://10.2.10.81
http://10.2.10.21:8080

Once it is done you should see 10 “healthy instances” running in Marathon UI.

You can also check your pool members list on your BIG-IP.

76

As we can see, the Marathon BIG-IP Controller is adapting the pool members setup based on the
number of instances delivering this application automatically.

10. Scale back the application to 2 to save resources for the next labs.

Expected time to complete: 1 hours

Attention: MODULE 2: BUILD A MESOS / MARATHON CLUSTER CAN BE SKIPPED. THE
BLUEPRINT IS PRE-CONFIGURED WITH A WORKING CLUSTER. THIS MODULE IS FOR DOC-
UMENTION PURPOSES ONLY.

4.4 Lab Setup

We will leverage the following setup to configure the Mesos / Marathon environment.

77

Hostname IP-ADDR Credentials
jumpbox 10.1.1.250 user/Student!Agility!
bigip1 10.1.1.245

10.2.10.60
admin/admin
root/default

mesos-master1 10.2.10.21 ubuntu/ubuntu
root/default

mesos-agent1 10.2.10.22 ubuntu/ubuntu
root/default

mesos-agent2 10.2.10.23 ubuntu/ubuntu
root/default

78

5
Class 4: Introduction to RedHat OpenShift

This introductory class covers the following topics:

5.1 Module 1: Build an Openshift Cluster

Attention: THIS MODULE CAN BE SKIPPED. THE BLUEPRINT IS PRE-CONFIGURED WITH A
WORKING CLUSTER. THIS MODULE IS FOR DOCUMENTION PURPOSES ONLY.

In this module, we will build a 3 node cluster (1x master and 2x nodes) utilizing CentOS server images.

As a reminder, in this module, our cluster setup is:

Hostname IP-ADDR Role
ose-master1 10.3.10.21 Master
ose-node1 10.3.10.22 Node
ose-node2 10.3.10.23 Node

5.1.1 Lab 1.1 - Prep CentOS

Note:

• This installation will utilize centOS v7.5.

• SSH keys were configured to allow the jumphost to login without a passwd as well as between the
master & nodes to facilitate the Ansible playbooks.

Important: The following commands need to be run on all three nodes unless otherwise specified.

1. From the jumpbox open mRemoteNG and start a session to each of the following servers. The
sessions are pre-configured to connect with the default user “centos”.

• ose-master1

79

• ose-node1

• ose-node2

2. For your convenience we’ve already added the host IP & names to /etc/hosts. Verify the file

cat /etc/hosts

The file should look like this:

If entries are not there add them to the bottom of the file be editing “/etc/hosts” with ‘vim’

sudo vim /etc/hosts

#cut and paste the following lines to /etc/hosts

10.3.10.21 ose-master1
10.3.10.22 ose-node1
10.3.10.23 ose-node2

3. Ensure the OS is up to date

sudo yum update -y

#This can take a few seconds to several minutes depending on demand to download
→˓the latest updates for the OS.

4. Install the docker packages

sudo yum install -y docker
sudo systemctl start docker && sudo systemctl enable docker

5. Verify docker is up and running

sudo docker run --rm hello-world

If everything is working properly you should see the following message

80

5.1.2 Lab 1.2 - Install Openshift

Important: The following commands need to be run on the master only, unless otherwise specified.

1. Install Ansible

sudo yum install -y epel-release
sudo yum install -y ansible

2. Disable “epel-release”

vim /etc/yum.repos.d/epel.repo

Change the value enabled=1 to 0 (zero).

Note: This is done to prevent future OS updates from including packages from outside the standard
packages.

3. Prep openshift AUTH

sudo mkdir -p /etc/origin/master/
sudo touch /etc/origin/master/htpasswd

4. Clone the openshift-ansible repo

git clone -b release-3.10 https://github.com/openshift/openshift-ansible.git
→˓$HOME/openshift-ansible

81

5. Install Openshift with Ansible

ansible-playbook -i $HOME/agilitydocs/openshift/ansible/inventory.ini $HOME/
→˓openshift-ansible/playbooks/prerequisites.yml
ansible-playbook -i $HOME/agilitydocs/openshift/ansible/inventory.ini $HOME/
→˓openshift-ansible/playbooks/deploy_cluster.yml

Note: If needed, to uninstall Openshift run the following command:

ansible-playbook -i $HOME/agilitydocs/openshift/ansible/inventory.ini $HOME/
→˓openshift-ansible/playbooks/adhoc/uninstall.yml

Here’s the “inventory” (refrenced by our ansible playbook) used for the deployment.

[OSEv3:children]
masters
nodes
etcd

[masters]
10.3.10.21 openshift_ip=10.3.10.21

[etcd]
10.3.10.21 openshift_ip=10.3.10.21

[nodes]
10.3.10.21 openshift_ip=10.3.10.21 openshift_schedulable=true openshift_node_
→˓group_name="node-config-master-infra"
10.3.10.22 openshift_ip=10.3.10.22 openshift_schedulable=true openshift_node_
→˓group_name="node-config-compute"
10.3.10.23 openshift_ip=10.3.10.23 openshift_schedulable=true openshift_node_
→˓group_name="node-config-compute"

[OSEv3:vars]
ansible_ssh_user=centos
ansible_become=true
enable_excluders=false
enable_docker_excluder=false
ansible_service_broker_install=false

containerized=true
openshift_disable_check=disk_availability,memory_availability,docker_storage,
→˓docker_image_availability

deployment_type=origin
openshift_deployment_type=origin

openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true',
→˓'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]

openshift_public_hostname=ose-master1
openshift_master_api_port=8443
openshift_master_console_port=8443

openshift_metrics_install_metrics=false
openshift_logging_install_logging=false

82

6. Enable oc bash completion

oc completion bash >>/etc/bash_completion.d/oc_completion

7. Add user “centos” to openshift users

sudo htpasswd -b /etc/origin/master/htpasswd centos centos

8. Add user “centos” to “cluster-admin”

oc adm policy add-cluster-role-to-user cluster-admin centos

5.2 Module 2: F5 Container Connector with RedHat OpenShift

Red Hat’s OpenShift Origin is a containerized application platform with a native Kubernetes integration. The
BIG-IP Controller for Kubernetes enables use of a BIG-IP device as an edge load balancer, proxying traffic
from outside networks to pods inside an OpenShift cluster. OpenShift Origin uses a pod network defined
by the OpenShift SDN.

The F5 Integration for Kubernetes overview describes how the BIG-IP Controller works with Kubernetes.
Because OpenShift has a native Kubernetes integration, the BIG-IP Controller works essentially the same
in both environments. It does have a few OpenShift-specific prerequisites.

Today we are going to go through a prebuilt OpenShift environment with some locally deployed yaml files.

5.2.1 Lab 2.1 - F5 Container Connector Setup

The BIG-IP Controller for OpenShift installs as a Deployment object

See also:

The official CC documentation is here: Install the BIG-IP Controller: Openshift

BIG-IP Setup

To use F5 Container connector, you’ll need a BIG-IP up and running first.

Through the Jumpbox, you should have a BIG-IP available at the following URL: https://10.1.1.245

Warning:

• Connect to your BIG-IP and check it is active and licensed. Its login and password are: ad-
min/admin

• If your BIG-IP has no license or its license expired, renew the license. You just need a LTM VE
license for this lab. No specific add-ons are required (ask a lab instructor for eval licenses if your
license has expired)

• Be sure to be in the Common partition before creating the following objects.

83

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://clouddocs.f5.com/containers/v2/openshift/kctlr-openshift-app-install.html
https://10.1.1.245

1. You need to setup a partition that will be used by F5 Container Connector.

From the CLI:
tmsh create auth partition ose

From the UI:
GoTo System --> Users --> Partition List
- Create a new partition called "ose" (use default settings)
- Click Finished

2. Create a vxlan tunnel profile

From the CLI:
tmsh create net tunnel vxlan ose-vxlan {app-service none flooding-type multipoint}

From the UI:
GoTo Network --> Tunnels --> Profiles --> VXLAN
- Create a new profile called "ose-vxlan"
- Set the Flooding Type = Multipoint
- Click Finished

84

3. Create a vxlan tunnel

From the CLI:
tmsh create net tunnel tunnel ose-tunnel {key 0 local-address 10.3.10.60 profile
→˓ose-vxlan}

From the UI:
GoTo Network --> Tunnels --> Tunnel List
- Create a new tunnel called "ose-tunnel"
- Set the Local Address to 10.3.10.60
- Set the Profile to the one previously created called "ose-vxlan"
- Click Finished

Container Connector Deployment

See also:

For a more thorough explanation of all the settings and options see F5 Container Connector - Openshift

85

https://clouddocs.f5.com/containers/v2/openshift/

Now that BIG-IP is licensed and prepped with the “ose” partition, we need to define a Kubernetes deploy-
ment and create a Kubernetes secret to hide our bigip credentials.

1. From the jumpbox open mRemoteNG and start a session with ose-master.

Note: As a reminder we’re utilizing a wrapper called MRemoteNG for Putty and other services.
MRNG hold credentials and allows for multiple protocols(i.e. SSH, RDP, etc.), makes jumping in and
out of SSH connections easier.

On your desktop select MRemoteNG, once launched you’ll see a few tabs similar to the example
below. Open up the OpenShift Enterprise / OSE-Cluster folder and double click ose-master.

2. “git” the demo files

Note: These files should be here by default, if NOT run the following commands.

git clone https://github.com/f5devcentral/f5-agility-labs-containers.git ~/
→˓agilitydocs

cd ~/agilitydocs/openshift

3. Log in with an Openshift Client.

Note: Here we’re using a user “centos”, added when we built the cluster. When prompted for
password, enter “centos”.

86

https://kubernetes.io/docs/user-guide/deployments/
https://kubernetes.io/docs/user-guide/deployments/
https://kubernetes.io/docs/user-guide/secrets/

oc login -u centos -n default

Important: Upon logging in you’ll notice access to several projects. In our lab well be working from
the default “default”.

4. Create bigip login secret

oc create secret generic bigip-login -n kube-system --from-literal=username=admin
→˓--from-literal=password=admin

You should see something similar to this:

5. Create kubernetes service account for bigip controller

oc create serviceaccount k8s-bigip-ctlr -n kube-system

You should see something similar to this:

6. Create cluster role for bigip service account (admin rights, but can be modified for your environment)

oc create clusterrolebinding k8s-bigip-ctlr-clusteradmin --clusterrole=cluster-
→˓admin --serviceaccount=kube-system:k8s-bigip-ctlr

You should see something similar to this:

7. Next let’s explore the f5-hostsubnet.yaml file

cd /root/agilitydocs/openshift

cat f5-bigip-hostsubnet.yaml

87

You’ll see a config file similar to this:

1 apiVersion: v1
2 kind: HostSubnet
3 metadata:
4 name: openshift-f5-node
5 annotations:
6 pod.network.openshift.io/fixed-vnid-host: "0"
7 host: openshift-f5-node
8 hostIP: 10.3.10.60
9 subnet: "10.131.0.0/23"

Attention: This YAML file creates an OpenShift Node and the Host is the BIG-IP with an assigned
/23 subnet of IP 10.131.0.0 (3 imagas down).

8. Next let’s look at the current cluster, you should see 3 members (1 master, 2 nodes)

oc get hostsubnet

9. Now create the connector to the BIG-IP device, then look before and after at the attached devices

oc create -f f5-bigip-hostsubnet.yaml

You should see a successful creation of a new OpenShift Node.

10. At this point nothing has been done to the BIG-IP, this only was done in the OpenShift environment.

oc get hostsubnet

You should now see OpenShift configured to communicate with the BIG-IP

Important: The Subnet assignment, in this case is 10.131.0.0/23, was assigned by the subnet:
“10.131.0.0/23” line in “HostSubnet” yaml file.

Note: In this lab we’re manually assigning a subnet. We have the option to let openshift auto assign
ths by removing subnet: “10.131.0.0/23” line at the end of the “hostsubnet” yaml file and setting the

88

assign-subnet: “true”. It would look like this:

apiVersion: v1
kind: HostSubnet
metadata:

name: openshift-f5-node
annotations:

pod.network.openshift.io/fixed-vnid-host: "0"
pod.network.openshift.io/assign-subnet: "true"

host: openshift-f5-node
hostIP: 10.3.10.60

11. Create the vxlan tunnel self-ip

Tip: For your SELF-IP subnet, remember it is a /14 and not a /23 - Why? The Self-IP has to be able
to understand those other /23 subnets are local in the namespace in the example above for Master,
Node1, Node2, etc. Many students accidently use /23, but then the self-ip will be only to communicate
to one subnet on the openshift-f5-node. When trying to ping across to services on other /23 subnets
from the BIG-IP for instance, communication will fail as your self-ip doesn’t have the proper subnet
mask to know those other subnets are local.

From the CLI:
tmsh create net self ose-vxlan-selfip address 10.131.0.1/14 vlan ose-tunnel

From the UI:
GoTo Network --> Self IP List
- Create a new Self-IP called "ose-vxlan-selfip"
- Set the IP Address to "10.131.0.1". (An IP from the subnet assigned in the
→˓previous step.)
- Set the Netmask to "255.252.0.0"
- Set the VLAN / Tunnel to "ose-tunnel" (Created earlier)
- Set Port Lockdown to "Allow All"
- Click Finished

12. Now we’ll create an Openshift F5 Container Connector to do the API calls to/from the F5 device. First
we need the “deployment” file.

89

cd /root/agilitydocs/openshift

cat f5-cluster-deployment.yaml

You’ll see a config file similar to this:

1 apiVersion: extensions/v1beta1
2 kind: Deployment
3 metadata:
4 name: k8s-bigip-ctlr
5 namespace: kube-system
6 spec:
7 replicas: 1
8 template:
9 metadata:

10 name: k8s-bigip-ctlr
11 labels:
12 app: k8s-bigip-ctlr
13 spec:
14 serviceAccountName: k8s-bigip-ctlr
15 containers:
16 - name: k8s-bigip-ctlr
17 image: "f5networks/k8s-bigip-ctlr:latest"
18 imagePullPolicy: IfNotPresent
19 env:
20 - name: BIGIP_USERNAME
21 valueFrom:
22 secretKeyRef:
23 name: bigip-login
24 key: username
25 - name: BIGIP_PASSWORD
26 valueFrom:
27 secretKeyRef:
28 name: bigip-login
29 key: password
30 command: ["/app/bin/k8s-bigip-ctlr"]
31 args: [
32 "--bigip-username=$(BIGIP_USERNAME)",
33 "--bigip-password=$(BIGIP_PASSWORD)",
34 "--bigip-url=10.3.10.60",
35 "--bigip-partition=ose",
36 "--namespace=default",
37 "--pool-member-type=cluster",
38 "--openshift-sdn-name=/Common/ose-tunnel"
39]

13. Create the container connector deployment with the following command

oc create -f f5-cluster-deployment.yaml

14. Check for successful creation:

oc get pods -n kube-system -o wide

90

15. If the tunnel is up and running big-ip should be able to ping the cluster nodes. SSH to big-ip and run
one or all of the following ping tests.

Hint: To SSH to big-ip use mRemoteNG and the bigip1 shortcut

ping ose-master
ping 10.128.0.1

ping ose-node1
ping 10.129.0.1

ping ose-node2
ping 10.130.0.1

5.2.2 Lab 2.2 - F5 Container Connector Usage

Now that our container connector is up and running, let’s deploy an application and leverage our F5 CC.

For this lab we’ll use a simple pre-configured docker image called “f5-hello-world”. It can be found on docker
hub at f5devcentral/f5-hello-world

To deploy our application, we will need to do the following:

1. Define a Deployment: this will launch our application running in a container.

91

https://hub.docker.com/r/f5devcentral/f5-hello-world/

2. Define a ConfigMap: this can be used to store fine-grained information like individual properties or
coarse-grained information like entire config files or JSON blobs. It will contain the BIG-IP configura-
tion we need to push.

3. Define a Service: this is an abstraction which defines a logical set of pods and a policy by which
to access them. Expose the service on a port on each node of the cluster (the same port on each
node). You’ll be able to contact the service on any <NodeIP>:NodePort address. If you set the type
field to “NodePort”, the Kubernetes master will allocate a port from a flag-configured range (default:
30000-32767), and each Node will proxy that port (the same port number on every Node) into your
Service.

App Deployment

On the ose-master we will create all the required files:

1. Create a file called f5-hello-world-deployment.yaml

Tip: Use the file in /root/f5-agility-labs-containers/openshift

1 apiVersion: extensions/v1beta1
2 kind: Deployment
3 metadata:
4 name: f5-hello-world
5 spec:
6 replicas: 2
7 template:
8 metadata:
9 labels:

10 run: f5-hello-world
11 spec:
12 containers:
13 - name: f5-hello-world
14 image: "f5devcentral/f5-hello-world:develop"
15 imagePullPolicy: IfNotPresent
16 ports:
17 - containerPort: 8080
18 protocol: TCP

2. Create a file called f5-hello-world-configmap.yaml

Tip: Use the file in /root/f5-agility-labs-containers/openshift

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: f5-hello-world
5 namespace: default
6 labels:
7 f5type: virtual-server
8 data:
9 schema: "f5schemadb://bigip-virtual-server_v0.1.7.json"

10 data: |
11 {
12 "virtualServer": {

92

13 "frontend": {
14 "balance": "round-robin",
15 "mode": "http",
16 "partition": "ose",
17 "virtualAddress": {
18 "bindAddr": "10.3.10.81",
19 "port": 80
20 }
21 },
22 "backend": {
23 "serviceName": "f5-hello-world",
24 "servicePort": 8080,
25 "healthMonitors": [{
26 "interval": 5,
27 "protocol": "http",
28 "send": "HEAD / HTTP/1.0\r\n\r\n",
29 "timeout": 16
30 }]
31 }
32 }
33 }

3. Create a file called f5-hello-world-service.yaml

Tip: Use the file in /root/f5-agility-labs-containers/openshift

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: f5-hello-world
5 labels:
6 run: f5-hello-world
7 spec:
8 ports:
9 - port: 8080

10 protocol: TCP
11 targetPort: 8080
12 type: ClusterIP
13 selector:
14 run: f5-hello-world

4. We can now launch our application:

oc create -f f5-hello-world-deployment.yaml
oc create -f f5-hello-world-configmap.yaml
oc create -f f5-hello-world-service.yaml

5. To check the status of our deployment, you can run the following commands:

93

oc get pods -o wide

oc describe svc f5-hello-world

6. To test the app you need to pay attention to:

The Endpoints, that’s our 2 instances (defined as replicas in our deployment file) and the port as-
signed to the service: port 8080.

Now that we have deployed our application sucessfully, we can check our BIG-IP configuration. From
the browser open https://10.1.1.245

Warning: Don’t forget to select the “ose” partition or you’ll see nothing.

Here you can see a new Virtual Server, “default_f5-hello-world” was created, listening on 10.3.10.81
in partition “ose”.

94

https://10.1.1.245

Check the Pools to see a new pool and the associated pool members: Local Traffic –> Pools –>
“cfgmap_default_f5-hello-world_f5-hello-world” –> Members

Note: You can see that the pool members IP addresses are assigned from the overlay network
(ClusterIP mode)

7. Now access your application via the BIG-IP VIP: 10.3.10.81

95

8. Hit Refresh many times and go back to your BIG-IP UI, go to Local Traffic –> Pools –> Pool list –>
cfgmap_default_f5-hello-world_f5-hello-world –> Statistics to see that traffic is distributed as expected.

9. Scale the f5-hello-world app

oc scale --replicas=10 deployment/f5-hello-world

10. Check the pods were created

oc get pods

96

11. Check the pool was updated on big-ip

97

Attention: Which network(s) are the IPs allocated from?

Expected time to complete: 30 minutes

Attention: MODULE 1: BUILD AN OPENSHIFT CLUSTER CAN BE SKIPPED. THE BLUEPRINT IS
PRE-CONFIGURED WITH A WORKING CLUSTER. THIS MODULE IS FOR DOCUMENTION PUR-
POSES ONLY.

5.3 Lab Setup

We will leverage the following setup to configure the OpenShift environment.

Hostname IP-ADDR Credentials
jumpbox 10.1.1.250 user/Student!Agility!
bigip1 10.1.1.245

10.3.10.60
admin/admin
root/default

ose-master1 10.3.10.21 centos/centos
root/default

ose-node1 10.3.10.22 centos/centos
root/default

ose-node2 10.3.10.23 centos/centos
root/default

98

6
Class 5: Advanced Labs for Red Hat OpenShift Container

Platform (OCP)

The purpose of this lab is to give you more visibility on

6.1 Module 1: Welcome to OpenShift!

This lab guide is the F5 Advanced Labs for Red Hat OpenShift Container Platform (OCP). This lab guide
and blueprint was created using OCP version 3.7. This lab provides a quick tour of the console to help you
get familiar with the user interface along with some key terminology we will use in subsequent lab content.

6.1.1 Key Terms

We will be using the following terms throughout the workshop labs so here are some basic definitions you
should be familiar with. And you’ll learn more terms along the way, but these are the basics to get you
started.

• Container - Your software wrapped in a complete filesystem containing everything it needs to run

• Image - We are talking about Docker images; read-only and used to create containers

• Pod - One or more docker containers that run together

• Service - Provides a common DNS name to access a pod (or replicated set of pods)

• Project - A project is a group of services that are related logically (for this workshop we have setup
your account to have access to just a single project)

• Deployment - an update to your application triggered by a image change or config change

• Build - The process of turning your source code into a runnable image

• BuildConfig - configuration data that determines how to manage your build

• Route - a labeled and DNS mapped network path to a service from outside OpenShift

• Master - The foreman of the OpenShift architecture, the master schedules operations, watches for
problems, and orchestrates everything

• Node - Where the compute happens, your software is run on nodes

99

Step 1: Access the Win7 Jump box

Use the following username and password:

• username: user

• password: Student!Agility!

Note: Use the Send Text to Client option to paste the password.

• We are using RHEL in this blueprint

• We updated on all the nodes (ose-node1, ose-node2) the /etc/hosts file so that each node is reachable
via its name

[root@ose-node01 ~]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
10.10.199.100 ose-mstr01 ose-mstr01.f5.local
10.10.199.101 ose-node01 ose-node01.f5.local
10.10.199.102 ose-node02 ose-node02.f5.local

• On ose-mstr01, we created some ssh keys for user that we copied on all the nodes. This way you can
use ose-mstr01 as needed to connect to all nodes without authentication if wanting to jump around
using ssh i.e. SSH root@10.10.199.101 from ose-mstr01

Step 2: Access the master using the mRemoteNG client from the Win7 Jump box (there is a shortcut in
the taskbar). In the nRemoteNG client, Expand Connections > Agility2018 > OpenShiftenterprise >
OSE-cluster. Here, you’ll have shortcuts to the different Openshift nodes (Master and nodes) and to your
BIG-IPs.

• Master Mgmt IP: 10.10.199.100 root/default

• BIGIP01 – 10.10.200.98 root/default admin/admin

• BIGIP02 – 10.10.200.99 root/default admin/admin

6.1.2 Accessing OpenShift

OpenShift provides a web console that allow you to perform various tasks via a web browser. Additionally,
you can utilize a command line tool to perform tasks. Let’s get started by logging into both of these and
checking the status of the platform.

Step 3: Login to OpenShift master

Open a terminal on the master (click on ose-master in the mRemoteNG client) and login using the same
URI/user/password with following command:

oc login https://ose-mstr01.f5.local:8443 --insecure-skip-tls-verify=true

Use the following username and password username: demouser password: demouser

[root@ose-mstr01 ~]# oc login https://ose-mstr01.f5.local:8443 --insecure-skip-tls-
→˓verify=true
Authentication required for https://ose-mstr01.f5.local:8443 (openshift)
Username: demouser
Password:
Login successful.

You have access to the following projects and can switch between them with 'oc
→˓project <projectname>':

100

mailto:root@10.10.199.101

default
f5demo
guestbook
kube-public
kube-service-catalog

* kube-system
logging
management-infra
openshift
openshift-infra
openshift-node
openshift-template-service-broker
yelb

Using project "kube-system".
[root@ose-mstr01 ~]#

Step 4: Check the OpenShift status

The oc status command shows a high level overview of the project currently in use, with its components
and their relationships, as shown in the following example:

[root@ose-mstr01 ~]# oc status
In project kube-system on server https://ose-mstr01.f5.local:8443

You have no services, deployment configs, or build configs.
Run 'oc new-app' to create an application.
[root@ose-mstr01 ~]#

Step 5: Check the OpenShift nodes

You can manage nodes in your instance using the CLI. The CLI interacts with node objects that are repre-
sentations of actual node hosts. The master uses the information from node objects to validate nodes with
health checks.

To list all nodes that are known to the master:

[root@ose-mstr01 ~]# oc get nodes
NAME STATUS AGE VERSION
ose-mstr01.f5.local Ready,SchedulingDisabled 24d v1.7.6+a08f5eeb62
ose-node01 Ready 24d v1.7.6+a08f5eeb62
ose-node02 Ready 24d v1.7.6+a08f5eeb62
[root@ose-mstr01 ~]#

If the node status shows NotReady or SchedulingDisabled contact the lab proctor. The node is not
passing the health checks performed from the master and Pods cannot be scheduled for placement on the
node.

Note: “SchedulingDisabled” for the Master is normal.

To get more detailed information about a specific node, including the reason for the current condition use
the oc describe node command. This does provide alot of very useful information and can assist with
throubleshooting issues.

[root@ose-mstr01 ~]# oc describe node ose-mstr01.f5.local
Name: ose-mstr01.f5.local

101

Role:
Labels: beta.kubernetes.io/arch=amd64

beta.kubernetes.io/os=linux
kubernetes.io/hostname=ose-mstr01.f5.local
openshift-infra=apiserver

Annotations: volumes.kubernetes.io/controller-managed-attach-detach=true
Taints: <none>
CreationTimestamp: Fri, 22 Jun 2018 15:53:34 -0700
Conditions:
Type Status LastHeartbeatTime
→˓LastTransitionTime Reason Message
---- ------ ----------------- ----------------
→˓-- ------ -------
OutOfDisk False Tue, 17 Jul 2018 12:08:16 -0700 Fri, 22 Jun
→˓2018 15:53:34 -0700 KubeletHasSufficientDisk kubelet has
→˓sufficient disk space available
MemoryPressure False Tue, 17 Jul 2018 12:08:16 -0700 Fri, 22 Jun
→˓2018 15:53:34 -0700 KubeletHasSufficientMemory kubelet has sufficient
→˓memory available
DiskPressure False Tue, 17 Jul 2018 12:08:16 -0700 Fri, 22 Jun
→˓2018 15:53:34 -0700 KubeletHasNoDiskPressure kubelet has no disk
→˓pressure
Ready True Tue, 17 Jul 2018 12:08:16 -0700 Tue, 17 Jul
→˓2018 11:07:28 -0700 KubeletReady kubelet is posting
→˓ready status
Addresses:
InternalIP: 10.10.199.100
Hostname: ose-mstr01.f5.local
Capacity:
cpu: 4
memory: 16266916Ki
pods: 40
Allocatable:
cpu: 4
memory: 16164516Ki
pods: 40
System Info:
Machine ID: 8bd4148d1a6249a7bca6e753d64862b3
System UUID: 564DADCC-A795-99FC-F2EA-24AFEAD600C3
Boot ID: 16b282b5-5ee0-4e1a-be6a-b8e1e2ae2449
Kernel Version: 3.10.0-862.3.3.el7.x86_64
OS Image: OpenShift Enterprise
Operating System: linux
Architecture: amd64
Container Runtime Version: docker://1.13.1
Kubelet Version: v1.7.6+a08f5eeb62
Kube-Proxy Version: v1.7.6+a08f5eeb62
ExternalID: ose-mstr01.f5.local
Non-terminated Pods: (2 in total)
Namespace Name CPU Requests
→˓CPU Limits Memory Requests Memory Limits
--------- ---- ------------
→˓---------- --------------- -------------
kube-service-catalog apiserver-56t4l 0 (0%)
→˓0 (0%) 0 (0%) 0 (0%)
kube-service-catalog controller-manager-m2mbt 0 (0%)
→˓0 (0%) 0 (0%) 0 (0%)
Allocated resources:

102

(Total limits may be over 100 percent, i.e., overcommitted.)
CPU Requests CPU Limits Memory Requests Memory Limits
------------ ---------- --------------- -------------
0 (0%) 0 (0%) 0 (0%) 0 (0%)
Events:
FirstSeen LastSeen Count From SubObjectPath
→˓Type Reason Message
--------- -------- ----- ---- -------------
→˓-------- ------ -------
1h 1h 1 kubelet, ose-mstr01.f5.local
→˓Normal NodeAllocatableEnforced Updated Node Allocatable limit across
→˓pods
1h 1h 1 kubelet, ose-mstr01.f5.local
→˓Normal Starting Starting kubelet.
1h 1h 1 kubelet, ose-mstr01.f5.local
→˓Normal NodeHasSufficientDisk Node ose-mstr01.f5.local status is now:
→˓NodeHasSufficientDisk
1h 1h 1 kubelet, ose-mstr01.f5.local
→˓Normal NodeHasSufficientMemory Node ose-mstr01.f5.local status is now:
→˓NodeHasSufficientMemory
1h 1h 1 kubelet, ose-mstr01.f5.local
→˓Normal NodeHasNoDiskPressure Node ose-mstr01.f5.local status is now:
→˓NodeHasNoDiskPressure
1h 1h 1 kubelet, ose-mstr01.f5.local
→˓Warning Rebooted Node ose-mstr01.f5.local has been rebooted,
→˓boot id: 16b282b5-5ee0-4e1a-be6a-b8e1e2ae2449
1h 1h 1 kubelet, ose-mstr01.f5.local
→˓Normal NodeNotReady Node ose-mstr01.f5.local status is now:
→˓NodeNotReady
1h 1h 1 kubelet, ose-mstr01.f5.local
→˓Normal NodeNotSchedulable Node ose-mstr01.f5.local status is now:
→˓NodeNotSchedulable
1h 1h 1 kubelet, ose-mstr01.f5.local
→˓Normal NodeReady Node ose-mstr01.f5.local status is now:
→˓NodeReady
[root@ose-mstr01 ~]#

Step 6: Check to see what projects you have access to:

[root@ose-mstr01 ~]# oc get projects
NAME DISPLAY NAME STATUS
default Active
f5demo Active
guestbook Active
kube-public Active
kube-service-catalog Active
kube-system Active
logging Active
management-infra Active
openshift Active
openshift-infra Active
openshift-node Active
openshift-template-service-broker Active
yelb Active

You will be using these projects in the lab

Step 7: Check to see what host subnests are created on OpenShift:

103

[root@ose-mstr01 ~]# oc get hostsubnets
NAME HOST HOST IP SUBNET EGRESS IPS
ose-mstr01.f5.local ose-mstr01.f5.local 10.10.199.100 10.130.0.0/23 []
ose-node01 ose-node01 10.10.199.101 10.128.0.0/23 []
ose-node02 ose-node02 10.10.199.102 10.129.0.0/23 []
[root@ose-mstr01 ~]#

Step 8: Access OpenShift web console

From the jumpbox navigate to the URI provided by your instructor and login with the user/password provided
(there is a favorite on chrome called Login - OpenShift Container Platform).

Use the following username and password username: demouser password: demouser

6.1.3 Troubleshooting OpenShift!

If you have a problem in your OpenShift Container Platform 3 environment, how do you investigate

• How can I troubleshoot it?

• What logs can I inspect?

• How can I modify the log level / detail that openshift generates?

• I need to provide supporting data to technical support for analysis. What information is needed?

A starting point for data collection from an OpenShift master or node is a sosreport that includes docker
and OpenShift related information. The process to collect a sosreport is the same as with any other Red
Hat Enterprise Linux (RHEL) based system:

Note: The following is provided for informational purposes. You do not need to run these commands for
the lab.

yum update sos
sosreport

104

Openshift has five log message severities. Messages with FATAL, ERROR, WARNING and some INFO
severities appear in the logs regardless of the log configuration.

0 - Errors and warnings only
2 - Normal information
4 - Debugging-level information
6 - API-level debugging information (request / response)
8 - Body-level API debugging information

This parameter can be set in the OPTIONS for the relevant services environment file within /etc/sysconfig/

For example to set OpenShift master’s log level to debug, add or edit this line in /etc/sysconfig/atomic-
openshift-master

OPTIONS='--loglevel=4'

and then restart the service with

systemctl restart atomic-openshift-master

Key files / directories

/etc/origin/{node,master}/
/etc/origin/{node,master}/{node.master}-config.yaml

6.2 Module 2: Working with BIG-IP HA Pairs or Device Groups

Each Container Connector is uniquely suited to its specific container orchestration environment and pur-
pose, utilizing the architecture and language appropriate for the environment. Application Developers inter-
act with the platform’s API; the CCs watch the API for certain events, then act accordingly.

The Container Connector is stateless (Stateless means there is no record of previous interactions and each
interaction request has to be handled based entirely on information that comes with it). The inputs are:

• the container orchestration environment’s config

• the BIG-IP device config

• the CC config (provided via the appropriate means from the container orchestration environment).

Wherever a Container Connector runs, it always watches the API and attempts to bring the BIG-IP up-to-
date with the latest applicable configurations.

6.2.1 Managing BIG-IP HA Clusters in OpenShift

You can use the F5 Container Connectors (also called F5 BIG-IP Controller) to manage a BIG-IP HA active-
standby pair or device group. The deployment details vary depending on the platform. For most, the basic
principle is the same: You should run one BIG-IP Controller instance for each BIG-IP device. You will deploy
two BIG-IP Controller instances - one for each BIG-IP device. To help ensure Controller HA, you will deploy
each Controller instance on a separate Node in the cluster.

105

6.2.2 BIG-IP Config Sync

Important: Each Container Connector monitors the BIG-IP partition it manages for configuration changes.
If its configuration changes, the Connector reapplies its own configuration to the BIG-IP. F5 does not rec-
ommend making configuration changes to objects in any partition managed by a F5 Container Connector
via any other means (for example, the configuration utility, TMOS, or by syncing configuration from another
device or service group). Doing so may result in disruption of service or unexpected behavior.

The Container Connector for OpenShift uses FDB entries and ARP records to identify the Cluster resources
associated with BIG-IP Nodes. Because BIG-IP config sync doesn’t include FDB entries or ARP records,
F5 does not recommend using automatic configuration sync when managing a BIG-IP HA pair or cluster
with the F5 Container Connector. You must disable config sync when using tunnels.

Complete the steps below to set up the solution shown in the diagram. Be sure to use the correct IP
addresses and subnet masks for your OpenShift Cluster

106

Step Task

1.
Initial BIG-IP HA Setup

2.
Upload the HostSubnet Files to the OpenShift API
Server

• openshift create hostsubnets ha
• openshift upload hostsubnets ha
• openshift verify hostsubnets ha

3.
Set up VXLAN on the BIG-IP Devices

• creating OCP partition create
• ocp-profile create
• openshift create vxlan profile ha
• penshift create vxlan tunnel ha
• openshift vxlan selfIP ha
• openshift vxlan floatingip ha

4.
Deploy the BIG-IP Controller (F5 Container Con-
nector)

• openshift rbac ha
• openshift create deployment ha
• openshift upload deployment ha

6.2.3 Initial BIG-IP HA Setup

Step 1:

The purpose of this lab is not to cover BIG-IP High Availability (HA) in depth but focus on OpenShift con-
figuration with BIG-IP. Some prior BIG-IP HA knowledge is required. We have created the BIG-IPs base
configuration for bigip01 and bigip02 to save time. Below is the initial configuration used on each BIG-IP:

Note: The following is provided for informational purposes. You do not need to run these commands for
the lab.

bigip01.f5.local

tmsh modify sys global-settings hostname bigip01.f5.local
tmsh modify sys global-settings mgmt-dhcp disabled
tmsh create sys management-ip 10.10.200.98/24
tmsh create sys management-route 10.10.200.1
tmsh create net vlan external interfaces add {1.1}
tmsh create net vlan internal interfaces add {1.2}
tmsh create net vlan ha interfaces add {1.3}
tmsh create net self 10.10.199.98/24 vlan internal
tmsh create net self 10.10.201.98/24 vlan external
tmsh create net self 10.10.202.98/24 vlan ha allow-service default
tmsh create net route default gw 10.10.201.1
tmsh mv cm device bigip1 bigip01.f5.local
tmsh modify cm device bigip01.f5.local configsync-ip 10.10.202.98
tmsh modify cm device bigip01.f5.local unicast-address {{ip 10.10.202.98} {ip
→˓management-ip}}

107

tmsh modify cm trust-domain ca-devices add {10.10.200.99} username admin password
→˓admin
tmsh create cm device-group ocp-devicegroup devices add {bigip01.f5.local bigip02.f5.
→˓local} type sync-failover auto-sync disabled
tmsh run cm config-sync to-group ocp-devicegroup
tmsh save sys config

bigip02.f5.local

tmsh modify sys global-settings hostname bigip02.f5.local
tmsh modify sys global-settings mgmt-dhcp disabled
tmsh create sys management-ip 10.10.200.99/24
tmsh create sys management-route 10.10.200.1
tmsh create net vlan external interfaces add {1.1}
tmsh create net vlan internal interfaces add {1.2}
tmsh create net vlan ha interfaces add {1.3}
tmsh create net self 10.10.199.99/24 vlan internal
tmsh create net self 10.10.201.99/24 vlan external
tmsh create net self 10.10.202.99/24 vlan ha allow-service default
tmsh create net route default gw 10.10.201.1
tmsh modify sys global-settings gui-setup disabled
tmsh mv cm device bigip1 bigip02.f5.local
tmsh modify cm device bigip02.f5.local configsync-ip 10.10.202.99
tmsh modify cm device bigip02.f5.local unicast-address {{ip 10.10.202.99} {ip
→˓management-ip}}
tmsh save sys config

Tip: Before adding the BIG-IP devices to OpenShift make sure your High Availability (HA) device trust
group, license, selfIP, vlans are configured correctly.

Note: You have shortcuts to connect to your BIG-IPs in Chrome. Login: admin, Password: admin

Validate that SDN services license is active

Attention: In your lab environment the BIG-IP VE LAB license includes the SDN license. The following
is provided as a reference of what you may see in a production license. The SDN license is also included
in the -V16 version of the BIG-IP VE license.

108

Validate the vlan configuration

Validate bigip01 self IP configuration

Validate bigip02 self IP configuration

Validate the device group HA settings and make sure bigip01 and bigip02 are in sync. If out of sync, sync
the bigip

109

All synced. Note the sync-failover configuration is set to manual sync

The diagram below displays the BIG-IP deployment with the OpenShift cluster in High Availability (HA)
active-standby pair or device group. Note this solution applies to BIG-IP devices v13.x and later only. To
accomplish High Availability (HA) active-standby pair or device group with OpenShift the BIG-IP needs to
create a floating vxlan tunnel address with is currently only available in BIG-IP 13.x and later.

6.2.4 Upload the HostSubnet Files to the OpenShift API Server

Step 2: Create a new OpenShift HostSubnet

HostSubnets must use valid YAML. You can upload the files individually using separate oc create com-
mands.

Create one HostSubnet for each BIG-IP device. These will handle health monitor traffic.

Also create one HostSubnet to pass client traffic. You will create the floating IP address for the active device
in this subnet as shown in the diagram above.

Attention: We have created the YAML files to save time. The files are located at /root/agility2018/ocp
on the master (ose-master)

cd /root/agility2018/ocp

6.2.5 Define HostSubnets

hs-bigip01.yaml

{
"apiVersion": "v1",
"host": "openshift-f5-bigip01",

110

"hostIP": "10.10.199.98",
"kind": "HostSubnet",
"metadata": {

"name": "openshift-f5-bigip01"
},
"subnet": "10.131.0.0/23"

}

hs-bigip02.yaml

{
"apiVersion": "v1",
"host": "openshift-f5-bigip02",
"hostIP": "10.10.199.99",
"kind": "HostSubnet",
"metadata": {

"name": "openshift-f5-bigip02"
},
"subnet": "10.131.2.0/23"

}

hs-bigip-float.yaml

{
"apiVersion": "v1",
"host": "openshift-f5-bigip-float",
"hostIP": "10.10.199.200",
"kind": "HostSubnet",
"metadata": {

"name": "openshift-f5-bigip-float"
},
"subnet": "10.131.4.0/23"

}

Create the HostSubnet files to the OpenShift API server. Run the following commands from the master

oc create -f hs-bigip01.yaml
oc create -f hs-bigip02.yaml
oc create -f hs-bigip-float.yaml

Verify creation of the HostSubnets:

[root@ose-mstr01 ocp]# oc get hostsubnet
NAME HOST HOST IP SUBNET
→˓EGRESS IPS
openshift-f5-bigip-float openshift-f5-bigip-float 10.10.199.200 10.131.4.0/23
→˓[]
openshift-f5-bigip01 openshift-f5-bigip01 10.10.199.98 10.131.0.0/23
→˓[]
openshift-f5-bigip02 openshift-f5-bigip02 10.10.199.99 10.131.2.0/23
→˓[]
ose-mstr01.f5.local ose-mstr01.f5.local 10.10.199.100 10.130.0.0/23
→˓[]
ose-node01 ose-node01 10.10.199.101 10.128.0.0/23
→˓[]
ose-node02 ose-node02 10.10.199.102 10.129.0.0/23
→˓[]
[root@ose-mstr01 ocp]#

111

6.2.6 Set up VXLAN on the BIG-IP Devices

Important: The BIG-IP OpenShift Controller cannot manage objects in the /Common partition.

Its recommended to create all HA using the /Common partition

Tip: You can copy and paste the following commands to be run directly from the OpenShift master (ose-
mstr01). To paste content into mRemoteNG; use your right mouse button.

Step 3.1: Create a new partition on your BIG-IP system

• ssh root@10.10.200.98 tmsh create auth partition ocp

• ssh root@10.10.200.99 tmsh create auth partition ocp

Step 3.2: Creating ocp-profile

• ssh root@10.10.200.98 tmsh create net tunnels vxlan ocp-profile flooding-type multipoint

• ssh root@10.10.200.99 tmsh create net tunnels vxlan ocp-profile flooding-type multipoint

Step 3.3: Creating floating IP for underlay network

• ssh root@10.10.200.98 tmsh create net self 10.10.199.200/24 vlan internal traffic-group traffic-group-
1

• ssh root@10.10.200.98 tmsh run cm config-sync to-group ocp-devicegroup

Step 3.4: Creating vxlan tunnel ocp-tunnel

• ssh root@10.10.200.98 tmsh create net tunnels tunnel ocp-tunnel key 0 profile ocp-profile local-
address 10.10.199.200 secondary-address 10.10.199.98 traffic-group traffic-group-1

• ssh root@10.10.200.99 tmsh create net tunnels tunnel ocp-tunnel key 0 profile ocp-profile local-
address 10.10.199.200 secondary-address 10.10.199.99 traffic-group traffic-group-1

Step 3.5: Creating overlay self-ip

• ssh root@10.10.200.98 tmsh create net self 10.131.0.98/14 vlan ocp-tunnel

• ssh root@10.10.200.99 tmsh create net self 10.131.2.99/14 vlan ocp-tunnel

Step 3.6: Creating floating IP for overlay network

• ssh root@10.10.200.98 tmsh create net self 10.131.4.200/14 vlan ocp-tunnel traffic-group traffic-
group-1

• ssh root@10.10.200.98 tmsh run cm config-sync to-group ocp-devicegroup

Step 3.7: Saving configuration

• ssh root@10.10.200.98 tmsh save sys config

• ssh root@10.10.200.99 tmsh save sys config

Before adding the BIG-IP controller to OpenShift validate the partition and tunnel configuration

Validate that the OCP bigip partition was created

112

mailto:root@10.10.200.98
mailto:root@10.10.200.99
mailto:root@10.10.200.98
mailto:root@10.10.200.99
mailto:root@10.10.200.98
mailto:root@10.10.200.98
mailto:root@10.10.200.98
mailto:root@10.10.200.99
mailto:root@10.10.200.98
mailto:root@10.10.200.99
mailto:root@10.10.200.98
mailto:root@10.10.200.98
mailto:root@10.10.200.98
mailto:root@10.10.200.99

Validate bigip01 self IP configuration

Note: On the active device, there is floating IP address in the subnet assigned by the OpenShift SDN.

Validate bigip02 self IP configuration

Check the ocp-tunnel configuration (under Network -> Tunnels). Note the local-address 10.10.199.200 and
secondary-address are 10.10.199.98 for bigip01 and 10.10.199.99 for bigip02. The secondary-address will
be used to send monitor traffic and the local address will be used by the active device to send client traffic.

113

6.2.7 Deploy the BIG-IP Controller (F5 Container Connector)

Take the steps below to deploy a contoller for each BIG-IP device in the cluster.

6.2.8 Set up RBAC

The F5 BIG-IP Controller requires permission to monitor the status of the OpenSfhift cluster. The following
will create a “role” that will allow it to access specific resources.

You can create RBAC resources in the project in which you will run your BIG-IP Controller. Each Controller
that manages a device in a cluster or active-standby pair can use the same Service Account, Cluster Role,
and Cluster Role Binding.

Step 4.1: Create a Service Account for the BIG-IP Controller

[root@ose-mstr01 ocp]# oc create serviceaccount bigip-ctlr -n kube-system
serviceaccount "bigip-ctlr" created

Step 4.2: Create a Cluster Role and Cluster Role Binding with the required permissions.

The following file has already being created f5-kctlr-openshift-clusterrole.yaml which is located in
/root/agility2018/ocp on the master

1 # For use in OpenShift clusters
2 apiVersion: v1
3 kind: ClusterRole

114

4 metadata:
5 annotations:
6 authorization.openshift.io/system-only: "true"
7 name: system:bigip-ctlr
8 rules:
9 - apiGroups: ["", "extensions"]

10 resources: ["nodes", "services", "endpoints", "namespaces", "ingresses", "routes"]
11 verbs: ["get", "list", "watch"]
12 - apiGroups: ["", "extensions"]
13 resources: ["configmaps", "events", "ingresses/status"]
14 verbs: ["get", "list", "watch", "update", "create", "patch"]
15 - apiGroups: ["", "extensions"]
16 resources: ["secrets"]
17 resourceNames: ["<secret-containing-bigip-login>"]
18 verbs: ["get", "list", "watch"]
19

20 ---
21

22 apiVersion: v1
23 kind: ClusterRoleBinding
24 metadata:
25 name: bigip-ctlr-role
26 userNames:
27 - system:serviceaccount:kube-system:bigip-ctlr
28 subjects:
29 - kind: ServiceAccount
30 name: bigip-ctlr
31 roleRef:
32 name: system:bigip-ctlr

[root@ose-mstr01 ocp]# oc create -f f5-kctlr-openshift-clusterrole.yaml
clusterrole "system:bigip-ctlr" created
clusterrolebinding "bigip-ctlr-role" created

6.2.9 Create Deployments

Step 4.3: Deploy the BIG-IP Controller

Create an OpenShift Deployment for each Controller (one per BIG-IP device). You need to deploy a con-
troller for both f5-bigip-node01 and f5-bigip-node02

• Provide a unique metadata.name for each Controller.

• Provide a unique –bigip-url in each Deployment (each Controller manages a separate BIG-IP device).

• Use the same –bigip-partition in all Deployments.

bigip01-cc.yaml

1 apiVersion: extensions/v1beta1
2 kind: Deployment
3 metadata:
4 name: bigip01-ctlr
5 namespace: kube-system
6 spec:
7 replicas: 1
8 template:
9 metadata:

115

10 name: k8s-bigip-ctlr1
11 labels:
12 app: k8s-bigip-ctlr1
13 spec:
14 serviceAccountName: bigip-ctlr
15 containers:
16 - name: k8s-bigip-ctlr
17 image: "f5networks/k8s-bigip-ctlr:latest"
18 command: ["/app/bin/k8s-bigip-ctlr"]
19 args: [
20 "--credentials-directory=/tmp/creds",
21 "--bigip-url=10.10.200.98",
22 "--bigip-partition=ocp",
23 "--pool-member-type=cluster",
24 "--manage-routes=true",
25 "--node-poll-interval=5",
26 "--verify-interval=5",
27 "--namespace=demoproj",
28 "--namespace=yelb",
29 "--namespace=guestbook",
30 "--namespace=f5demo",
31 "--route-vserver-addr=10.10.201.120",
32 "--route-http-vserver=ocp-vserver",
33 "--route-https-vserver=ocp-https-vserver",
34 "--openshift-sdn-name=/Common/ocp-tunnel"
35]
36 volumeMounts:
37 - name: bigip-creds
38 mountPath: "/tmp/creds"
39 readOnly: true
40 volumes:
41 - name: bigip-creds
42 secret:
43 secretName: bigip-login
44 imagePullSecrets:
45 - name: f5-docker-images

bigip02-cc.yaml

1 apiVersion: extensions/v1beta1
2 kind: Deployment
3 metadata:
4 name: bigip02-ctlr
5 namespace: kube-system
6 spec:
7 replicas: 1
8 template:
9 metadata:

10 name: k8s-bigip-ctlr1
11 labels:
12 app: k8s-bigip-ctlr1
13 spec:
14 serviceAccountName: bigip-ctlr
15 containers:
16 - name: k8s-bigip-ctlr
17 image: "f5networks/k8s-bigip-ctlr:latest"
18 command: ["/app/bin/k8s-bigip-ctlr"]
19 args: [

116

20 "--credentials-directory=/tmp/creds",
21 "--bigip-url=10.10.200.99",
22 "--bigip-partition=ocp",
23 "--pool-member-type=cluster",
24 "--manage-routes=true",
25 "--node-poll-interval=5",
26 "--verify-interval=5",
27 "--namespace=demoproj",
28 "--namespace=yelb",
29 "--namespace=guestbook",
30 "--namespace=f5demo",
31 "--route-vserver-addr=10.10.201.120",
32 "--route-http-vserver=ocp-vserver",
33 "--route-https-vserver=ocp-https-vserver",
34 "--openshift-sdn-name=/Common/ocp-tunnel"
35]
36 volumeMounts:
37 - name: bigip-creds
38 mountPath: "/tmp/creds"
39 readOnly: true
40 volumes:
41 - name: bigip-creds
42 secret:
43 secretName: bigip-login
44 imagePullSecrets:
45 - name: f5-docker-images

[root@ose-mstr01 ocp]# oc create -f bigip01-cc.yaml
deployment "bigip01-ctlr" created
[root@ose-mstr01 ocp]# oc create -f bigip02-cc.yaml
deployment "bigip02-ctlr" created

Step 4.4: Verify Pod creation

Verify the deployment and pods that are created

[root@ose-mstr01 ocp]# oc get deployment -n kube-system
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
bigip01-ctlr 1 1 1 1 42s
bigip02-ctlr 1 1 1 1 36s

Note: Check in your lab that you have your two controllers as AVAILABLE. If Not, you won’t be able to do
the lab. It may take up to 10 minutes for them to be available

[root@ose-mstr01 ocp]# oc get deployment bigip01-ctlr -n kube-system
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
bigip01-ctlr 1 1 1 1 1m

[root@ose-mstr01 ocp]# oc get pods -n kube-system
NAME READY STATUS RESTARTS AGE
bigip01-ctlr-242733768-dbwdm 1/1 Running 0 1m
bigip02-ctlr-66171581-q87kb 1/1 Running 0 1m
[root@ose-mstr01 ocp]#

You can also use the web console in OpenShift to view the bigip controller (login: demouser, password:

117

demouser). Go the kube-system project

6.2.10 Upload the Deployments

Step 4.5: Upload the Deployments to the OpenShift API server. Use the pool-only configmap to configura-
tion project namespace: f5demo on the bigip

pool-only.yaml

1 kind: ConfigMap
2 apiVersion: v1
3 metadata:
4 # name of the resource to create on the BIG-IP
5 name: k8s.poolonly
6 # the namespace to create the object in
7 # As of v1.1, the k8s-bigip-ctlr watches all namespaces by default
8 # If the k8s-bigip-ctlr is watching a specific namespace(s),
9 # this setting must match the namespace of the Service you want to proxy

10 # -AND- the namespace(s) the k8s-bigip-ctlr watches
11 namespace: f5demo
12 labels:
13 # the type of resource you want to create on the BIG-IP
14 f5type: virtual-server
15 data:
16 schema: "f5schemadb://bigip-virtual-server_v0.1.7.json"
17 data: |
18 {
19 "virtualServer": {
20 "backend": {
21 "servicePort": 8080,
22 "serviceName": "f5demo",

118

23 "healthMonitors": [{
24 "interval": 3,
25 "protocol": "http",
26 "send": "GET /\r\n",
27 "timeout": 10
28 }]
29 },
30 "frontend": {
31 "virtualAddress": {
32 "port": 80
33 },
34 "partition": "ocp",
35 "balance": "round-robin",
36 "mode": "http"
37 }
38 }
39 }

[root@ose-mstr01 ocp]# oc create -f pool-only.yaml
configmap "k8s.poolonly" created
[root@ose-mstr01 ocp]#

Step 4.6: Check bigip01 and bigip02 to make sure the pool got created (make sure you are looking at the
“ocp” partition). Validate that green

Step 4.7: Increase the replicas of the f5demo project pods. Replicas specified the required number of
instances to run

[root@ose-mstr01 ocp]# oc scale --replicas=10 deployment/f5demo -n f5demo
deployment "f5demo" scaled
[root@ose-mstr01 ocp]#

Note: It may take time to have your replicas up and running. Don’t hesitate to track this by using the
following command. to check the number of AVAILABLE instances:

oc get deployment f5demo -n f5demo

119

Validate that bigip01 and bigip02 are updated with the additional pool members and their health monitor
works. If the monitor is failing check the tunnel and selfIP.

6.2.11 Validation and Troubleshooting

Now that you have HA configured and uploaded the deployment, it is time to generate traffic through our
BIG-IPs.

Step 5.1: Create a virtual IP address for the deployment

Add a virtual IP to the the configmap. You can edit the pool-only.yaml configmap. There are multiple ways
to edit the configmap which will be covered in module 3. In this task remove the deployment, edit the yaml
file and re-apply the deployment

[root@ose-mstr01 ocp]# oc delete -f pool-only.yaml
configmap "k8s.poolonly" deleted
[root@ose-mstr01 ocp]#

Edit the pool-only.yaml and add the bindAddr

vi pool-only.yaml

"frontend": {
"virtualAddress": {

"port": 80,
"bindAddr": "10.10.201.220"

120

Tip: Do not use TAB in the file, only spaces. Don’t forget the “,” at the end of the “”port”: 80,” line.

Create the modified pool-only deployment

[root@ose-mstr01 ocp]# oc create -f pool-only.yaml
configmap "k8s.poolonly" created
[root@ose-mstr01 ocp]#

Connect to the virtual server at http://10.10.201.220. Does the connection work? If not, try the following
troubleshooting options:

1. Capture the http request to see if the connection is established with the BIG-IP

2. Follow the following network troubleshooting section

6.2.12 Network Troubleshooting

Attention: How do I verify connectivity between the BIG-IP VTEP and the OSE Node?

1. Ping the Node’s VTEP IP address. Use the -s flag to set the MTU of the packets to allow for VxLAN
encapsulation.

[root@bigip01:Standby:Changes Pending] config # ping -s 1600 -c 4 10.10.199.101
PING 10.10.199.101 (10.10.199.101) 1600(1628) bytes of data.
1608 bytes from 10.10.199.101: icmp_seq=1 ttl=64 time=2.94 ms
1608 bytes from 10.10.199.101: icmp_seq=2 ttl=64 time=2.21 ms
1608 bytes from 10.10.199.101: icmp_seq=3 ttl=64 time=2.48 ms
1608 bytes from 10.10.199.101: icmp_seq=4 ttl=64 time=2.47 ms

--- 10.10.199.101 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3006ms
rtt min/avg/max/mdev = 2.210/2.527/2.946/0.267 ms

2. Ping the Pod’s IP address (use the output from looking at the pool members in the previous steps).
Use the -s flag to set the MTU of the packets to allow for VxLAN encapsulation.

[root@bigip01:Standby:Changes Pending] config # ping -s 1600 -c 4 10.128.0.54
PING 10.128.0.54 (10.128.0.54) 1600(1628) bytes of data.

--- 10.128.0.54 ping statistics ---
4 packets transmitted, 0 received, 100% packet loss, time 12999ms

3. Now change the MTU to 1400

[root@bigip01:Standby:Changes Pending] config # ping -s 1400 -c 4 10.128.0.54
PING 10.128.0.54 (10.128.0.54) 1400(1428) bytes of data.
1408 bytes from 10.128.0.54: icmp_seq=1 ttl=64 time=1.74 ms
1408 bytes from 10.128.0.54: icmp_seq=2 ttl=64 time=2.43 ms
1408 bytes from 10.128.0.54: icmp_seq=3 ttl=64 time=2.77 ms
1408 bytes from 10.128.0.54: icmp_seq=4 ttl=64 time=2.25 ms

--- 10.128.0.54 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3005ms
rtt min/avg/max/mdev = 1.748/2.303/2.774/0.372 ms

121

http://10.10.201.220

Note: When pinging the VTEP IP directly the BIG-IP was L2 adjacent to the device and could send
a large MTU.

In the second example, the packet is dropped across the VxLAN tunnel.

In the third example, the packet is able to traverse the VxLAN tunnel.

4. In a TMOS shell, output the REST requests from the BIG-IP logs.

• Do a tcpdump of the underlay network.

Example showing two-way communication between the BIG-IP VTEP IP and the OSE node
VTEP IPs.

Example showing traffic on the overlay network; at minimum, you should see BIG-IP health
monitors for the Pod IP addresses.

[root@bigip01:Standby:Changes Pending] config # tcpdump -i ocp-tunnel -c 10 -nnn
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on ocp-tunnel, link-type EN10MB (Ethernet), capture size 65535 bytes
09:05:55.962408 IP 10.131.0.98.53404 > 10.128.0.54.8080: Flags [S], seq
→˓1597206142, win 29200, options [mss 1460,sackOK,TS val 441031289 ecr 0,nop,
→˓wscale 7], length 0 out slot1/tmm0 lis=
09:05:55.963532 IP 10.128.0.54.8080 > 10.131.0.98.53404: Flags [S.], seq
→˓1644640677, ack 1597206143, win 27960, options [mss 1410,sackOK,TS val 3681001
→˓ecr 441031289,nop,wscale 7], length 0 in slot1/tmm1 lis=
09:05:55.964361 IP 10.131.0.98.53404 > 10.128.0.54.8080: Flags [.], ack 1, win
→˓229, options [nop,nop,TS val 441031291 ecr 3681001], length 0 out slot1/tmm0
→˓lis=
09:05:55.964367 IP 10.131.0.98.53404 > 10.128.0.54.8080: Flags [P.], seq 1:10,
→˓ack 1, win 229, options [nop,nop,TS val 441031291 ecr 3681001], length 9: HTTP:
→˓GET / out slot1/tmm0 lis=
09:05:55.965630 IP 10.128.0.54.8080 > 10.131.0.98.53404: Flags [.], ack 10, win
→˓219, options [nop,nop,TS val 3681003 ecr 441031291], length 0 in slot1/tmm1 lis=
09:05:55.975754 IP 10.128.0.54.8080 > 10.131.0.98.53404: Flags [P.], seq 1:1337,
→˓ack 10, win 219, options [nop,nop,TS val 3681013 ecr 441031291], length 1336:
→˓HTTP: HTTP/1.1 200 OK in slot1/tmm1 lis=
09:05:55.975997 IP 10.128.0.54.8080 > 10.131.0.98.53404: Flags [F.], seq 1337,
→˓ack 10, win 219, options [nop,nop,TS val 3681013 ecr 441031291], length 0 in
→˓slot1/tmm1 lis=
09:05:55.976108 IP 10.131.0.98.53404 > 10.128.0.54.8080: Flags [.], ack 1337, win
→˓251, options [nop,nop,TS val 441031302 ecr 3681013], length 0 out slot1/tmm0
→˓lis=
09:05:55.976114 IP 10.131.0.98.53404 > 10.128.0.54.8080: Flags [F.], seq 10, ack
→˓1337, win 251, options [nop,nop,TS val 441031303 ecr 3681013], length 0 out
→˓slot1/tmm0 lis=
09:05:55.976488 IP 10.131.0.98.53404 > 10.128.0.54.8080: Flags [.], ack 1338, win
→˓251, options [nop,nop,TS val 441031303 ecr 3681013], length 0 out slot1/tmm0
→˓lis=
10 packets captured
10 packets received by filter
0 packets dropped by kernel

5. In a TMOS shell, view the MAC address entries for the OSE tunnel. This will show the mac address
and IP addresses of all of the OpenShift endpoints.

root@(bigip02)(cfg-sync In Sync)(Active)(/Common)(tmos)# show /net fdb tunnel ocp-
→˓tunnel

122

--
Net::FDB
Tunnel Mac Address Member Dynamic
--
ocp-tunnel 0a:0a:0a:0a:c7:64 endpoint:10.10.199.100%0 no
ocp-tunnel 0a:0a:0a:0a:c7:65 endpoint:10.10.199.101%0 no
ocp-tunnel 0a:0a:0a:0a:c7:66 endpoint:10.10.199.102%0 no
ocp-tunnel 0a:58:0a:80:00:60 endpoint:10.10.199.101 yes

6. In a TMOS shell, view the ARP entries.

Note: run the command “tmsh” if you do not see “(tmos)” in your shell.

This will show all of the ARP entries; you should see the VTEP entries on the ocpvlan and the Pod
IP addresses on ose-tunnel.

root@(bigip02)(cfg-sync In Sync)(Active)(/Common)(tmos)# show /net arp

--
→˓----------
Net::Arp
Name Address HWaddress Vlan Expire-in-
→˓sec Status
--
→˓----------
10.10.199.100 10.10.199.100 2c:c2:60:49:b2:9d /Common/internal 41
→˓ resolved
10.10.199.101 10.10.199.101 2c:c2:60:58:62:64 /Common/internal 70
→˓ resolved
10.10.199.102 10.10.199.102 2c:c2:60:51:65:a0 /Common/internal 41
→˓ resolved
10.10.202.98 10.10.202.98 2c:c2:60:1f:74:62 /Common/ha 64
→˓ resolved
10.128.0.96 10.128.0.96 0a:58:0a:80:00:60 /Common/ocp-tunnel 7
→˓ resolved

root@(bigip02)(cfg-sync In Sync)(Active)(/Common)(tmos)#

7. Validate floating traffic for ocp-tunnel self-ip

Check if the configuration is correct from step 3.6. Make sure the floating IP is set to traffic-group-1
floating. A floating traffic group is request for the response traffic from the pool-member. If the traffic
is local change to floating

123

change to floating

Connect to the viutal IP address

124

8. Test failover and make sure you can connect to the virtual.

Congratulations for completing the HA clustering setup. Before moving to the next module cleanup the
deployed resource:

[root@ose-mstr01 ocp]# oc delete -f pool-only.yaml
configmap "k8s.poolonly" created
[root@ose-mstr01 ocp]#

6.3 Module 3: Container Connector in Action

This section of the lab will cover creating OpenShift resources that the F5 Container Connector will process
and use to update the BIG-IP configuration and leverages the work you did in the previous sections.

6.3.1 Operational Overview

The Container Connector watches for events being generated by the Openshift API server and takes action
when it sees an OpenShift ConfigMap or Route resource that has an F5-specific label defined. The Con-
tainer Connector parses the ConfigMap or Route resource and updates the BIG-IP configuration to match
the desired state as defined by those resources.

In addition to watching and responding to events in real time, the Container Connector periodically queries
the OpenShift API for the current status and updates the BIG-IP as needed. This interval (verify-interval) is

125

30 seconds by default but is a startup value that can be modified.

An instance of the Container Connector can watch for changes in all namespaces (projects), a single
namespace or a discrete list of namespaces. Additionally, an instance of the Container Connector is con-
figured to make configuration changes in a single non-Common BIG-IP partition.

OpenShift runs on top of Kubernetes and the same Container Connector works for both, but many of the
Container Connector features apply to both while some apply only to OpenShift, like Routes, while others,
like Ingress, apply only to Kubernetes.

You can find detailed information about configuring, deploying and using the F5 Container Connector as
well as configuration options for ConfigMaps and Routes https://clouddocs.f5.com/containers/v2/#

Additionally, you can get more detailed information about an OpenShift command by using oc <command>
-help. So, for example, if you wanted to find out more about the oc create command, you would do the
following:

[root@ose-mstr01 garrison]# oc create -help

In the following exercises, you will create the following OpenShift resource types:

• ConfigMaps

• Routes

Additionally, you will also create variations of each resource type.

Note: You will use the same Windows jumpbox as you used in the previous sections to complete the
exercises in this section.

Unless otherwise noted, all the resource definition yaml files have been pre-created and can be found on
the ose-master server under /root/agility2018/apps/module3

6.3.2 Exercise 1: ConfigMap - Basic

An OpenShift ConfigMap is one of the resource types that the F5 Container Connector watches for. The
Container Connector will read the ConfigMap and create a virtual server, node(s), a pool, pool member(s)
and a pool health monitor.

In this exercise, you will create a ConfigMap that defines the objects that the Container Connector should
configure on the BIG-IP.

To complete this exercise, you will perform the following steps:

• Step 1: Deploy demo application

• Step 2: Create a service to expose the demo application

• Step 3: Create a ConfigMap that declares desired BIG-IP configuration

• Step 4: Review the BIG-IP configuration

• Step 5: Test the application

• Step 6: Scale the application

• Step 7: Test the scaled application

• Step 8: Cleanup deployed resources

126

https://clouddocs.f5.com/containers/v2

Step 1: Deploy demo application

From the ose-master, review the following Deployment configuration: f5-demo-app-deployment.yaml

1 apiVersion: extensions/v1beta1
2 kind: Deployment
3 metadata:
4 name: f5-demo-app
5 namespace: f5demo
6 spec:
7 replicas: 1
8 template:
9 metadata:

10 labels:
11 app: f5-demo-app
12 spec:
13 containers:
14 - name: f5-demo-app
15 image: chen23/f5-demo-app:openshift
16 ports:
17 - containerPort: 8080
18 protocol: TCP

Now that you have reviewed the Deployment,you need to actually create the Deployment by deploying it to
OpenShift by using the oc create command.

From ose-master server, run the following command:

Attention: Be sure to change the working directory on ose-mstr01:

cd /root/agility2018/apps/module3

[root@ose-mstr01 module3]# oc create -f f5-demo-app-deployment.yaml
deployment "f5-demo-app" created

Step 2: Create Service to expose application

In order for an application to be accessible outside of the OpenShift cluster, a Service must be created.
The Service uses a label selector to reference the application to be exposed. Additionally, the service also
specifies the container port (8080) that the application is listening on.

From ose-master, review the following Service: f5-demo-app-service.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: f5-demo-app
5 labels:
6 name: f5-demo-app
7 namespace: f5demo
8 spec:
9 type: ClusterIP

10 ports:
11 - port: 8080
12 targetPort: 8080
13 selector:
14 app: f5-demo-app

127

Now that you have reviewed the Service,you need to actually create the Service by deploying it to OpenShift
by using the oc create command.

From ose-master server, run the following command:

[root@ose-mstr01 module3]# oc create -f f5-demo-app-service.yaml
service "f5-demo-app" created

Step 3: Create ConfigMap

A ConfigMap is used to define the BIG-IP objects that need to be created to enable access to the application
via the BIG-IP.

The label, f5type: virtual-server, in the ConfigMap definition is what triggers the F5 Container Connector
to process this ConfigMap.

In addition to the label, there are several F5-specific sections defined:

• virtualServer: Beginning of F5-specific configuration

• backend: Represents the server-side of the virtual server definition

• healthMonitors: Health monitor definition for the pool

• frontend: Represents the client-side of the virtual server

• virtualAddress: IP address and port of virtual server

A ConfigMap points to a Service which points to one or more Pods where the application is running.

From ose-master, review the ConfigMap resource f5-demo-app-configmap.yaml

1 kind: ConfigMap
2 apiVersion: v1
3 metadata:
4 # name of the resource to create on the BIG-IP
5 name: f5-demo-app
6 # The namespace to create the object in.
7 # The k8s-bigip-ctlr watches all namespaces by default (as of v1.1).
8 # If the k8s-bigip-ctlr is watching a specific namespace(s),
9 # this setting must match the namespace of the Service you want to proxy

10 # -AND- the namespace(s) the k8s-bigip-ctlr watches.
11 namespace: f5demo
12 labels:
13 # tells the k8s-bigip-ctlr to watch this ConfigMap
14 f5type: virtual-server
15 data:
16 # NOTE: schema v0.1.4 is required as of k8s-bigip-ctlr v1.3.0
17 schema: "f5schemadb://bigip-virtual-server_v0.1.7.json"
18 data: |
19 {
20 "virtualServer": {
21 "backend": {
22 "servicePort": 8080,
23 "serviceName": "f5-demo-app",
24 "healthMonitors": [{
25 "interval": 30,
26 "protocol": "http",
27 "send": "GET /\r\n",
28 "timeout": 120
29 }]
30 },

128

31 "frontend": {
32 "virtualAddress": {
33 "port": 80,
34 "bindAddr": "10.10.201.130"
35 },
36 "partition": "ocp",
37 "balance": "least-connections-node",
38 "mode": "http"
39 }
40 }
41 }

Attention: Knowledge Check: How does the BIG-IP know which pods make up the application?

Now that you have reviewed the ConfigMap, you need to actually create the ConfigMap by deploying it to
OpenShift by using the oc create command:

[root@ose-mstr01 module3]# oc create -f f5-demo-app-configmap.yaml
configmap "f5-demo-app" created

Step 4: Review BIG-IP configuration

In this step, you will examine the BIG-IP configuration that was created by the Container Connector when it
processed the ConfigMap created in the previous step.

Launch the Chrome browser and click on the bookmark named bigip01.f5.local to access the BIG-IP GUI:

From the BIG-IP login page, enter username=admin and password=admin and click the Log in button:

129

Navigate to Local Traffic –> Network Map and change the partition to ocp using the dropdown in the
upper right. The network map view shows a virtual server, pool and pool member. All of these objects were
created by the Container Connector using the declarations defined in the ConfigMap.

Attention: Knowledge Check: In the network map view, what OpenShift object type does the pool
member IP address represent? How was the IP address assigned?

To view the IP address of the virtual server, hover your cursor over the name of the virtual server:

130

Attention: Knowledge Check: What OpenShift resource type was used to define the virtual server IP
address?

Step 5: Test the application

In this step, you will use the Chrome browser to access the application you previously deployed to OpenShift.

Open a new browser tab and enter the IP address assigned to the virtual server in to the address bar:

Note: On the application page, the Server IP is the pool member (pod) IP address; the Server Port is the
port of the virtual server; and the Client IP is the IP address of the Windows jumpbox you are using.

Step 6: Scale the application

The application deployed in step #1 is a single replica (instance). In this step,you are going to increase the
number of replicas and then check the BIG-IP configuration to see what’s changed.

131

When the deployment replica count is scaled up or scaled down, an OpenShift event is generated and the
Container Connector sees the event and adds or removes pool members as appropriate.

To scale the number of replicas, you will use the OpenShift oc scale command. You will be scaling the
demo app deployment and so You first need to get the name of the deployment.

From ose-master, issue the following command:

[root@ose-mstr01 module3]# oc get deployment -n f5demo
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
f5-demo-app 1 1 1 1 1m

You can see from the output that the deployment is named f5-demo-app. You will use that name for the
next command.

From the ose-master host, entering the following command to set the replica count for the deployment to 10
instances:

[root@ose-mstr01 module3]# oc scale --replicas=10 deployment/f5-demo-app -n f5demo
deployment "f5-demo-app" scaled

Step 7: Review the BIG-IP configuration

In this step, you will examine the BIG-IP configuration for changes that occured after the application was
scaled up.

Navigate to Local Traffic –> Network Map and change the partition to ocp using the dropdown in the
upper right.

Attention: Knowledge Check: How many pool members are shown in the network map view? What
do you think would happen if you scaled the deployment back to one replica?

Step 8: Test the scaled application

In this step, you will use the Chrome browser to access the application that you scaled to 10 replicas in the
previous step.

132

Open a new Chrome browser tab and enter the IP address assigned to the virtua server in to the address
bar:

If you reload the page every few seconds, you should see the Server IP address change. Because there is
more than one instance of the application running, the BIG-IP load balances the application traffic amongst
multiple pods.

Step 9: Cleanup deployed resources

In this step, you will remove the OpenShift Deployment, Service and ConfigMap resources you created in
the previous steps using the OpenShift oc delete command.

From ose-master server, issue the following commands:

[root@ose-mstr01 tmp]# oc delete -f f5-demo-app-configmap.yaml
configmap "f5-demo-app" deleted

[root@ose-mstr01 tmp]# oc delete -f f5-demo-app-deployment.yaml
deployment "f5-demo-app" deleted

[root@ose-mstr01 module3]# oc delete -f f5-demo-app-service.yaml
service "f5-demo-app" deleted

6.3.3 Exercise 2: Route - Basic

An OpenShift Route is one of the resource types that the F5 Container Connector watches for. A Route
defines a hostname or URI mapping to an application. For example, the hostname “customer.example.com”
could map to the application “customer”, hostname “catalog.example.com”, might map to the application
“catalog”, etc.

Similarly, a Route can refer to a URI path so, for example, the URI path “/customer” might map to the
application called “customer” and URI path “/catalog”, might map to the application called “catalog”. If a
Route only specifies URI paths, the Route applies to all HTTP request hostnames.

133

Additionally, a Route can refer to both a hostname and a URI path such as mycompany.com/customer or
mycompany.com/catalog

The F5 Container Connector reads the Route resource and creates a virtual server, node(s), a pool per
route path and pool members. Additionally, the Container Connector creates a layer 7 BIG-IP traffic policy
and associates it with the virtual server. This layer 7 traffic policy evaluates the hostname or URI path from
the request and forwards the traffic to the pool associated with that path.

A Route points to a Service which points to one or more Pods where the application is running.

Note: All Route resources share two virtual servers:

• ose-vserver for HTTP traffic, and

• https-ose-vserver for HTTPS traffic

The Container Connector assigns the names shown above by default. To set custom names, define route-
http-vserver and route-https-vserver in the BIG-IP Container Connector Deployment. Please see the
documentation at: http://clouddocs.f5.com for more details.

To complete this exercise, you will perform the following steps:

• Step 1: Deploy demo application and associated Service

• Step 2: Create a Route that defines routing rules based on hostname

• Step 3: Review the BIG-IP configuration

Step 1: Deploy demo application and its associated Service

In the previous exercise, you created the Deployment and Service separately. This step demonstrates
creating both the Deployment and the Service from single configuration file. A separator of 3 dashes (---)
is used to separate one resource definition from the next resource definition.

From ose-master, review the following deployment: f5-demo-app-route-deployment.yaml

1 apiVersion: extensions/v1beta1
2 kind: Deployment
3 metadata:
4 name: f5-demo-app-route
5 spec:
6 replicas: 1
7 template:
8 metadata:
9 labels:

10 app: f5-demo-app-route
11 spec:
12 containers:
13 - name: f5-demo-app-route
14 image: chen23/f5-demo-app:openshift
15 ports:
16 - containerPort: 8080
17 protocol: TCP
18 ---
19 apiVersion: v1
20 kind: Service
21 metadata:
22 name: f5-demo-app-route
23 labels:
24 name: f5-demo-app-route

134

http://clouddocs.f5.com

25 namespace: f5demo
26 spec:
27 type: ClusterIP
28 ports:
29 - port: 8080
30 targetPort: 8080
31 selector:
32 app: f5-demo-app-route

Now that you have reviewed the Deployment, you need to actually create it by deploying it to OpenShift by
using the oc create command:

[root@ose-mstr01 tmp]# oc create -f f5-demo-app-route-deployment.yaml -n f5demo
deployment "f5-demo-app-route" created
service "f5-demo-app-route" created

Step 2: Create OpenShift Route

In this step, you will create an OpenShift Route.

From ose-master server, review the following Route: f5-demo-app-route-route.yaml

1 apiVersion: v1
2 kind: Route
3 metadata:
4 labels:
5 name: f5-demo-app-route
6 name: f5-demo-app-route
7 namespace: f5demo
8 annotations:
9 # Specify a supported BIG-IP load balancing mode

10 virtual-server.f5.com/balance: least-connections-node
11 virtual-server.f5.com/health: |
12 [
13 {
14 "path": "mysite.f5demo.com/",
15 "send": "HTTP GET /",
16 "interval": 5,
17 "timeout": 10
18 }
19]
20 spec:
21 host: mysite.f5demo.com
22 path: "/"
23 port:
24 targetPort: 8080
25 to:
26 kind: Service
27 name: f5-demo-app-route

Attention: Knowledge Check: How does the Container Connector know what application the Route
refers to?

Now that you have reviewed the Route, you need to actually create it by deploying it to OpenShift by using
the oc create command:

135

[root@ose-mstr01 tmp]# oc create -f f5-demo-app-route-route.yaml -n f5demo
route "f5-demo-app-route" created

Step 3: Review the BIG-IP configuration

In this step, you will examine the BIG-IP configuration for changes that occured after the the OpenShift
Route was deployoed.

Using the Chrome browser, navigate to Local Traffic –> Network Map and change the partition to ocp
using the dropdown in the upper right.

The network map view shows two virtual servers that were created by the Container Connector when it
procssed the Route resource created in the previous step. One virtual server is for HTTP client traffic and
the other virtual server is for HTTPS client traffic.

To view the IP address of the virtual server, hover your cursor over the virtual server named ocp-vserver

Attention: Knowledge Check: Which OpenShift resource type defines the names of the two virtual
servers?

Next, you will view the traffic policy that was created by the Container Connector when it processed the
OpenShift Route.

Navigate to Local Traffic –> Policies –> Policy List and change the partition to ocp using the dropdown
in the upper right.

136

Click on the traffic policy listed uner Published Policies to view the policy page for the selected policy:

Next, click on the rule name listed under the Rules section of the policy page to view the rule page for the
selected rule:

Warning: Due to the version of TMOS used in this lab you will not see the correct “hostname” due to a
GUI issue.

On the rule page, review the configuration of the rule and note the match condition and rule action settings.

137

Attention: Knowledge Check: Which OpenShift resource type defines the hostname to match against?

Step 5: Test the application

In this step, you will use the Chrome browser to access the application you previously deployed.

Because the Route resource you created specifies a hostname for the path, you will need to use a hostname
instead of an IP address to access the demo application.

Open a new Chrome browser tab and enter the hostname mysite.f5demo.com in to the address bar:

On the application page, the Server IP is the pool member (pod) IP address; the Server Port is the port of
the virtual server; and the Client IP is the IP address of the Windows jumpbox you are using.

Step 6: Cleanup deployed resources

In this step, you will remove the Deployment, Service and Route resources you created in the previous
steps using the OpenShift oc delete command.

From ose-master server, issue the following commands:

[root@ose-mstr01 tmp]# oc delete -f f5-demo-app-route-route.yaml -n f5demo
route "f5-demo-app-route" deleted

[root@ose-mstr01 tmp]# oc delete -f f5-demo-app-route-deployment.yaml -n f5demo
deployment "f5-demo-app-route" deleted
service "f5-demo-app-route" deleted

6.3.4 Exercise 3: Route - Blue/Green Testing

The F5 Container Connector supports Blue/Green application testing e.g testing two different versions of
the same application, by using the weight parameter of OpenShift Routes. The weight parameter allows
you to establish relative ratios between application Blue and application Green. So, for example, if the first

138

route specifies a weight of 20 and the second a weight of 10, the application associated with the first route
ill get twice the number of requests as the application associated with the second route.

Just as in the previous exercise, the F5 Container Connector reads the Route resource and creates a virtual
server, node(s), a pool per route path and pool members.

However, in order to support Blue/Green testing using OpenShift Routes, the Container Connector creates
an iRule and a datagroup on the BIG-IP. Troubleshooting handles the connection routing based on the
assigned weights.

Note: At smaller request volumes, the ratio of requests to the Blue application and the requests to the
Green application may not match the relative weights assigned in the OpenShift Route. However, as the
number of requests increases, the ratio of requests between the Blue application and the Green application
should closely match the weights assigned in the OpenShift Route.

To complete this exercise, you will perform the following steps:

• Step 1: Deploy version 1 and version 2 of demo application and their related Services

• Step 2: Create an OpenShift Route for Blue/Green testing

• Step 3: Review BIG-IP configuration

• Step 4: Test the application

• Step 5: Generate some request traffic

• Step 6: Review the BIG-IP configuration

• Step 7: Cleanup deployed resources

Step 1: Deploy version 1 and version 2 of demo application and their associated Services

From ose-master, review the following deployment: f5-demo-app-bg-deployment.yaml

1 apiVersion: extensions/v1beta1
2 kind: Deployment
3 metadata:
4 name: node-blue
5 namespace: f5demo
6 spec:
7 replicas: 1
8 template:
9 metadata:

10 labels:
11 run: node-blue
12 spec:
13 containers:
14 - image: "chen23/f5-demo-app"
15 env:
16 - name: F5DEMO_APP
17 value: "website"
18 - name: F5DEMO_NODENAME
19 value: "Node Blue (No SSL)"
20 - name: F5DEMO_NODENAME_SSL
21 value: "Node Blue (SSL)"
22 - name: F5DEMO_COLOR
23 value: "0000FF"
24 - name: F5DEMO_COLOR_SSL
25 value: "0000FF"
26 imagePullPolicy: IfNotPresent

139

27 name: node-blue
28 ports:
29 - containerPort: 80
30 - containerPort: 443
31 protocol: TCP
32

33 ---
34

35 apiVersion: v1
36 kind: Service
37 metadata:
38 name: node-blue
39 labels:
40 run: node-blue
41 namespace: f5demo
42 spec:
43 ports:
44 - port: 80
45 protocol: TCP
46 targetPort: 80
47 name: http
48 - port: 443
49 protocol: TCP
50 targetPort: 443
51 name: https
52 type: ClusterIP
53 selector:
54 run: node-blue
55

56 ---
57

58 apiVersion: extensions/v1beta1
59 kind: Deployment
60 metadata:
61 name: node-green
62 namespace: f5demo
63 spec:
64 replicas: 1
65 template:
66 metadata:
67 labels:
68 run: node-green
69 spec:
70 containers:
71 - image: "chen23/f5-demo-app"
72 env:
73 - name: F5DEMO_APP
74 value: "website"
75 - name: F5DEMO_NODENAME
76 value: "Node Green (No SSL)"
77 - name: F5DEMO_COLOR
78 value: "99FF99"
79 - name: F5DEMO_NODENAME_SSL
80 value: "Node Green (SSL)"
81 - name: F5DEMO_COLOR_SSL
82 value: "00FF00"
83 imagePullPolicy: IfNotPresent
84 name: node-green

140

85 ports:
86 - containerPort: 80
87 - containerPort: 443
88 protocol: TCP
89

90 ---
91

92 apiVersion: v1
93 kind: Service
94 metadata:
95 name: node-green
96 labels:
97 run: node-green
98 spec:
99 ports:

100 - port: 80
101 protocol: TCP
102 targetPort: 80
103 name: http
104 type: ClusterIP
105 selector:
106 run: node-green

Now that you have reviewed the Deployment, you need to actually create it by deploying it to OpenShift by
using the oc create command:

[root@ose-mstr01 tmp]# oc create -f f5-demo-app-bg-deployment.yaml -n f5demo
deployment "node-blue" created
service "node-blue" created
deployment "node-green" created
service "node-green" created

Step 2: Create OpenShift Route for Blue/Green Testing

The basic Route example from the previous exercise only included one path. In order to support Blue/Green
application testing, a Route must be created that has two paths. In OpenShift, the second (and subsequent)
path is defined in the alternateBackends section of a Route resource.

From ose-master, review the following Route: f5-demo-app-bg-route.yaml

1 apiVersion: v1
2 kind: Route
3 metadata:
4 labels:
5 name: f5-demo-app-bg-route
6 name: f5-demo-app-bg-route
7 namespace: f5demo
8 annotations:
9 # Specify a supported BIG-IP load balancing mode

10 virtual-server.f5.com/balance: least-connections-node
11 virtual-server.f5.com/health: |
12 [
13 {
14 "path": "mysite-bg.f5demo.com/",
15 "send": "HTTP GET /",
16 "interval": 5,
17 "timeout": 10
18 }

141

19]
20 spec:
21 host: mysite-bg.f5demo.com
22 port:
23 targetPort: 80
24 to:
25 kind: Service
26 name: node-blue
27 weight: 20
28 alternateBackends:
29 - kind: Service
30 name: node-green
31 weight: 10

Note: How the Route resource refers to two different services: The first service is for the Blue application
with a weight of 20 and the second service is for the Green application with a weight of 10.

Attention: Knowledge Check: How many requests will the **Blue* application receive relative to the
Green application?*

Now that you have reviewed the Route, you need to actually create it by deploying it to OpenShift by using
the oc create command:

[root@ose-mstr01 module3]# oc create -f f5-demo-app-bg-route.yaml
route "f5-demo-app-bg-route" created

Verify that the Route was successfully creating by using the OpenShift oc get route command. Note
that, under the SERVICES column, the two applications are listed along with their request distribution
percentages.

[root@ose-mstr01 tmp]# oc get route -n f5demo
NAME HOST/PORT PATH SERVICES
→˓ PORT TERMINATION WILDCARD
f5-demo-app-bg-route mysite-bg.f5demo.com / node-blue(66%),node-green(33
→˓%) 80 None

Attention: Knowledge Check: What would the Route percentages be if the weights were 10 and 40?

Step 3: Review BIG-IP configuration

In this step, you will examine the BIG-IP configuration for changes made by the Container Connector after
the the OpenShift Route was deployoed.

Using the Chrome web browser, navigate to Local Traffic –> Pools –> Pool List and change the partition
to ocp using the dropdown in the upper right.

142

Note: There are two pools defined: one pool for the Blue application and a second pool for the Green
application. Additionally, the Container Connector also creates an iRule and a datagroup that the BIG-IP
uses to distribute traffic based on the weights assigned in the OpenShift Route.

Step 4: Test the application

In this step, you will use the Chrome browser to access blue and green applications you previously deployed.

Because the Route resource you created specifies a hostname for the path, you will need to use a hostname
instead of an IP address to access the demo application.

Open a new browser tab and enter the hostname mysite-bg.f5demo.com in to the address bar:

Refresh the browser periodically and you should see the web page change from the Blue application to the
Green application and back to the Blue application as noted by the colors on the page.

143

Step 5: Generate some request traffic

As the number of requests increases, the relative number of requests between the Blue application and the
Green application begins to approach the weights that have been defined in the OpenShift Route.

In this step, you will use the Linux curl utility to send a large volume of requests to the application.

From the ose-master server, run the following command to make 1000 requests to the application:

[root@ose-mstr01 ~]# for i in {1..1000}; do curl -s -o /dev/null http://mysite-bg.
→˓f5demo.com; done

Step 6: Review the BIG-IP configuration

In the previous step, you used the curl utility to generate a large volume of requests. In this step, you will
review the BIG-IP pool statistics to see how the requests were distributed between the Blue application and
the Green application.

Using the Chrome web browser, navigate to Local Traffic -> Pools -> Statistics and change the partition
to ocp using the dropdown in the upper right.

Step 7: Cleanup deployed resources

In this step, you will remove the Deployment, Service and Route resources you created in the previous
steps using the OpenShift oc delete command.

144

From ose-master server, run the following commands:

[root@ose-mstr01 tmp]# oc delete -f f5-demo-app-bg-route.yaml -n f5demo
route "f5-demo-app-bg-route" deleted

[root@ose-mstr01 tmp]# oc delete -f f5-demo-app-bg-deployment.yaml -n f5demo
deployment "node-blue" deleted
service "node-blue" deleted
deployment "node-green" deleted
service "node-green" deleted

Expected time to complete: 3 hours

6.4 Lab Setup

In the environment, there is a three-node OpenShift cluster with one master and two nodes. There is a pair
of BIG-IPs setup in an HA configuration:

Hostname IP-ADDR Credentials
jumpbox 10.10.200.199 user/Student!Agility!
bigip01 10.10.200.98 admin/admin

root/default
bigip02 10.10.200.99 admin/admin

root/default
ose-mstr01 10.10.199.100 root/default
ose-node01 10.10.199.101 root/default
ose-node02 10.10.199.102 root/default

145

	Getting Started
	Class 1: Introduction to Docker
	Class 2: Introduction to Kubernetes
	Class 3: Introduction to Mesos / Marathon
	Class 4: Introduction to RedHat OpenShift
	Class 5: Advanced Labs for Red Hat OpenShift Container Platform (OCP)

